
Section 6.4: Work

1. Work Performed by a Constant Force

Riemann sums are useful in many aspects of mathematics and the
physical sciences than just geometry. To illustrate one of its major uses
in physics, we consider the problem of calculating the work required
to perform a certain task. Before we consider the general problem of
calculating work, we first need to consider the problem of calculating
work done by a constant force. For this, we need some definitions and
basic results from physics.

Definition 1.1. If a constant force of magnitude F (measured in New-
tons, kg ∗m∗s−1, or measured in pounds, lb) is applied in the direction
of motion of an object and if the object moves a distance d (measured
in metres, m, or feet, f , then the work performed by the force on the
object is

W = F ∗ d

which is measured in Joules, J = kg ∗ m ∗ s−1, if force/distance is
measured in Newtons/metres, and foot-pounds, ft−lb, if force/distance
is measured in pounds/feet.

We illustrate with an example.

Example 1.2. Find the work done in pushing a car a distance of 8m
while exerting a constant force of 900N.
Since the force is constant, the work done is simply the product 8∗900 =
7, 200N .

2. Work Performed by a Variable Force

The real difficulty when calculating work done is when the force is
allowed to vary. In this case however, we can use Riemann sums to
help us find work done. Specifically, we have the following:

(i) Suppose that an object moves along the x-axis in the positive
direction from x = a to x = b and at each point x in [a, b], a
force f(x) acts on the object where f is a continuous function.

(ii) Divide the interval [a, b] into n equally sized subintervals of
lengths ∆x. Choose a point x1 from the first subinterval, x2

from the second and so on.
(iii) The force at the point xi is f(xi). Since f(x) is continuous, if n

is large, then the force on the ith interval will be approximately
constant and so the work done to move the object along the
ith interval will be approximated by f(xi)∆x.
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(iv) It follows that the total work done moving the object from a
to b will be approximated by the sum over each of the subin-
tervals:

W ∼

n
∑

i=1

f(xi)∆x.

Once again we have a very similar formula, so summarizing,
we get:

Result 2.1. The work done by a variable force f(x) to move an object
from x = a to x = b where a 6 x 6 b is equal to

W = lim
n→∞

n
∑

i=1

f(xi)∆x =

∫

b

a

f(x)dx.

We illustrate with an explicit example and then we consider another
application.

Example 2.2. A particle is moved along the x-axis by a force which
measures 10/(1 + x)2 at a point x feet from the origin. Find the work
done in moving a particle from the origin to a distance of 9ft.

This is a straight application of our result. Specifically, we have

W =

∫

9

0

10

(1 + x)2
dx = −

10

1 + x

∣

∣

∣

∣

9

0

= −1 − (−10) = 9ft − lb.

An example of a variable force is that one needs to exert to stretch a
spring past its natural length. The following tells us how to calculate
this force.

Result 2.3. (Hookes Law) The force required to maintain a spring
stretched x units beyond its natural length is proportional to x:

f(x) = mx

for some constant m called the spring constant.

Example 2.4. A force of 6N is required to stretch a string from a
natural length of 4m to a length of 41

2
m. What work is required to

stretch it to a length of 6m.

First we need to find the spring constant. Let x denote the distance the
spring is stretched beyond its natural length. We know when x = 1/2
we have F = 6, so it follows that 6 = m/2 or m = 12. Thus the force
required to maintain this spring stretched x units beyond its natural
length is f(x) = 12x. Now we need to calculate the work required to
stretch it to a length of 6m. Since we are stretching it from its natural
length to 6m, we are finding the work done for 0 6 x 6 2. Therefore
we have

W =

∫

2

0

12xdx = 24J.



3

3. Other Examples

The Riemann sums we have considered are for when a variable force
moves an object. It could be that a constant force moves different
parts of an object different distances (liking pulling a rope up the side
of a building), or a variable force could be moving different parts of
an object different distances (like sucking water out of an odd shaped
glass). There are far too many different scenarios to be able to list them
all, but in all cases, we can use modified Riemann sums to evaluate the
total work done. We finish with a couple of examples.

Example 3.1. Find the work required to pump all the water our of
a vat as illustrated below (given that the weight density of water is
9810N/m3) if the water is up to 2m deep.

4m

3m

6m

First we note that force is equal to weight density times volume. To
calculate the work done in pumping the water out, we first note that the
water travels different distances depending upon the depth of the water
in the tank. Therefore, we shall slice the water into small horizontal
strips of height ∆h (we use ∆h since h will be the variable measuring
the height of the water, so ∆h is a measurement of a small change in h,
or a slice of water), all of which travel approximately the same distance
when being pumped out of the vat and then sum to approximate the
total work done. We first make a sketch of the cross section:

h

r

First note using similar triangles, a slice of water of height h from the
bottom will have radius 2h/3, so width 4h/3. This means the volume
of a slice of water of height ∆h at a height h in the vat will be

V = 6 ∗ 4h/3∆h = 8h∆h.
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Therefore, the force of gravity on this slice will be

78480h∆h.

Since this slice is at height h, the distance it will be required to move
will be 3 − h, so the total work done to move this small slice of water
will be

78480h(3 − h)∆h.

Summing over all the strips of water with 0 6 h 6 2 and letting
∆h → 0, this sum becomes an integral and we obtain

lim
n→∞

∑

78480h(3 − h)∆h =

∫

2

0

78480h(3 − h)dh

=

∫

2

0

(

235440h−78480h2

)

dh =

(

117720h2
−26160h3

)2

0

= 261, 600J.

Example 3.2. A 28m uniform chain with a mass of 2kg per meter is
dangling from the roof of a building with a bucket with a mass of 25kg
on the end. How much work is needed to pull the chain and bucket to
the top of the building?

We first consider the work required to pull up just the chain. As in the
last example, since different parts of the chain have to move different
distances, we shall break the chain up into small pieces, where each
small piece travels approximately a fixed distance. Let x denote the
distance of a piece of the chain of width ∆x from the top of the building,
(we use ∆x since x is the measurement of distance from the top of the
building, so ∆x is a measurement of a small change in that distance,
or a small piece of the chain). We illustrate.

x

Delta x

The force due to gravity on this piece of chain will be 9.8 ∗ 2 ∗ ∆x =
19.6∆x (recall that force is equal to mass times acceleration). Since
it has to move a distance of x meters, the work required to move this
piece of chain will be

W = 19.6x∆x.
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Summing up over all the pieces of chain with 0 6 x 6 28 and letting
∆x → 0, we get

W =

∫

28

0

19.6xdx = 9.8x2

∣

∣

∣

∣

28

0

= 7683.2J

For the bucket, observe that this is a constant force of 245N moving
a fixed distance of 28m, so the total work done is W = 6860N . Thus
the total work done to move the bucket and chain is 14543.2J .


