
Section 7.3: Trigonometric Substitution

1. Types of Trigonometric Substitutions

We have seen how to evaluate the definite integral
∫

1

−1

√
1 − x2dx by

interpreting it as the area of a half circle. We would like, however, to
be able to find an antiderivative for this function, and other functions
like this, which involve square roots and squares of numbers. The basic
idea behind such integrals is to choose a convenient substitution which
cancels with enough things to give us something integrable. We start
by looking at an example.

Example 1.1. Find the integral
∫ √

1 − x2dx.
To solve this problem, we use the substitution x = sin(u). Then
dx/du = cos(u) or dx = cos(u)du. Then

∫ √
1 − x2dx =

∫

√

1 − sin2(u) cos(u)du =

∫

cos2(u)du

provided −π/2 6 u 6 π/2. Then using the half angle identity, we get
∫

cos2(u)dx =

∫

1

2
(1 + cos(2u))dx =

u

2
+

sin(2u)

4
+ C.

Observe however that the original function was in terms of x, so we
need to simplify and substitute back in to get everything in terms of
x. Using the double angle formula, we get

u

2
+

sin(2u)

4
+ C =

u

2
+

sin(u) cos(u)

2
+ C.

Since x = sin(u), it follows that cos(u) =
√

1 − x2, so

arcsin(x)

2
+

x
√

1 − x2

2
+ C = .

By making this simple trigonometric substitution, we were able to elim-
inate the square root through the use of trigonometric identities and
then use trigonometric identities and pythagoras to simplify. For a
general expression involving square roots and squares, the substitution
x = cos(u) may not work. However, other trigonometric substitutions
may work. We summarize the three main equation types for which
trigonometric substitution will work.

Result 1.2. The following is a list of which trigonometric substitutions
to make under which circumstances.

(i) For expressions involving
√

a2 − x2 where a is a constant, sub-
stitute x = a cos(u), where −π/2 6 u 6 π/2, simplify and
then use trigonometric integration.

(ii) For expressions involving
√

x2 + a2 where a is a constant, sub-
stitute x = a tan(u), where −π/2 6 u 6 π/2, simplify and
then use trigonometric integration.

1



2

(iii) For expressions involving
√

x2 − a2 where a is a constant, sub-
stitute x = a sec(u), where 0 6 u 6 π/2 or π 6 u 6 3π/2,
simplify and then use trigonometric integration.

We illustrate with an example of each. Since we have already consid-
ered the first, we just focus on the second two.

Example 1.3. Evaluate
∫

1√
x2 + 1

dx.

We make the substitution x = tan(u), so dx = sec2(u)du. Then,
∫

1√
x2 + 1

dx =

∫

1
√

(tan2(u) + 1)
sec2(u)du

=

∫

sec(u)du = ln | sec(u) + tan(u)| + C.

Since the original equation was in terms of x, we need to get the answer
in terms of x. However, since x = tan(u), we must have sec(u) =√

1 + x2, so
∫

1√
x2 + 1

dx = ln |
√

1 + x2 + x| + C.

Example 1.4. Evaluate
∫

√
x2 − 9

x3
dx.

Let x = 3 sec(u) so dx = 3 sec(u) tan(u)du. Then we have
∫

√
x2 − 9

x3
dx =

∫

√

9 sec2(u) − 9

(3 sec(u))3
3 tan(u) sec(u)du

=
1

3

∫

tan(u)

sec3(u)
sec(u) tan(u)du =

1

3

∫

tan2(u)

sec2(u)
du =

1

3

∫

sin2(u)du.

This last integral can be evaluated using the half angle identities, and
we can simplify using the double angle formula. We get

1

3

∫

sin2(u)du =
1

3

(

u

2
− sin(2u)

4

)

+ C =
1

3

(

u

2
− sin(u) cos(u)

2

)

+ C.

Finally, if x = 3 sec(u), then sec(u) = x/3. Consequently cos(u) = 3/x

and sin(u) =
√

1 − 9/x2 so we get

1

3

(

u

2
− sin(u) cos(u)

2

)

+ C =
sec−1(x)

6
+

√

1 − 9/x2

2x
+ C

=
sec−1(x)

6
+

√
x2 − 9

2x2
+ C.


