
Section 7.4: Integration of Rational Functions by Partial Fractions

”This is about as complicated as it gets”

1. The Method of Partial Fractions

Except for a few very special cases, currently we have no way to find
the integral of a general rational function. In this section we shall solve
this problem. In practicality, the method we shall develop is long and
cumbersome, but the most important thing is that, in general, it will
always work (though we may not always want to do it!). Before we
start with the integration, we need to develop a method of reducing a
rational function called the method of partial fractions. We motivate
our actions with an example.

Example 1.1. Evaluate the following integrals.

(i)
∫

x +
1

x − 1
+

1

x + 1
dx

For this integral we just break it up and evaluate each piece
individually:

∫

x +
1

x − 1
+

1

x + 1
dx =

∫

xdx +

∫

1

x − 1
dx +

∫

1

x + 1
dx

=
x2

2
+ ln(x − 1) + ln(x + 1) + C

(ii)
∫

x(x2 + 1)

(x2
− 1)

dx

Currently we have no way to evaluate this integral. However,
notice that

x(x2 + 1)

(x2
− 1)

= x +
1

x − 1
+

1

x + 1

if you find a common denominator, and we can integrate this.
Thus

x(x2 + 1)

(x2
− 1)

dx ==
x2

2
+ ln(x − 1) + ln(x + 1) + C.

By the last example, it looks like if we can somehow break a fraction
down by reversing the process of finding a common denominator, we
should be able to integrate certain rational functions. The method of
“reversing finding a common denominator” is a very important tool in
Calculus, so it has its own name - The Method of Partial Fractions.
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Suppose that R(x) = s(x)/q(x) is a rational functions where s(x) and
q(x) are polynomials. The method of partial fractions is fairly difficult,
so we start by describing the general set up and then proceed through
the different cases. We always start by doing the following:

(i) If the degree of s(x) is greater or equal to the degree of q(x),
use polynomial division to reduce R(x) to an expression of the
form R(x) = t(x) + p(x)/q(x) where t(x) is a polynomial of
the degree of p is less than the degree of q.

(ii) Factor q(x) completely. It is a fact from algebra that q(x) will
factor combinations of powers of linear functions (things of the
form (x − a)n) and powers of quadratics (things of the form
(ax2 + bx + c)m.

We illustrate these first two steps with an example.

Example 1.2.

3x3
− 2x + 2

x3
− 3x+2x

= 3 +
9x2

− 8x + 2

x3
− 3x2 + 2x

= 3 +
9x2

− 8x + 2

x(x − 2)(x − 1)

3

x3
− 3x2 + 2x

)

3x3
− 2x + 2

− 3x3 + 9x2
− 6x

9x2
− 8x

The next step depends upon how q(x) factors. We shall state the main
theorem below and then for ease, we break up the different possibilities
and consider each of them in turn. First, the main result of partial
fractions is the following.

Result 1.3. Suppose that R(x) = p(x)/q(x) where the degree of p is
less than the degree of q. Then the following are true:

(i) q(x) factors into a product of linear and quadratic factors
where the quadratic factors have no real roots.

(ii) Each factor (x + a)n of q(x) contributes

A1

(x + a)
+

A2

(x + a)2
+ . . .

An−1

(x + a)n−1

to partial fractions.
(iii) Each factor (x2 + ax + b)n of q(x) contributes

A1x + B1

(x2 + ax + b)
+

A2x + B2

(x2 + ax + b)2
+ . . .

An−1x + Bn−1

(x2 + ax + b)n−1

to partial fractions.

To find the Ai and Bi, we write R(x) equal to its possible partial
fraction representation, cross-multiply to clear denominators and then
choose appropriate values of x to substitute in.
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2. q(x) factors into distinct linear terms

In this case, it is a fact from algebra that if q(x) = (x − a1)(x −

a2) . . . (x − an) where all of the ai are different, then

p(x)

q(x)
=

A1

(x − a1)
+ · · ·+

An

(x − an)

(so p(x)/q(x) can be written as a sum of reciprocals of linear factors).
In order to calculate the numbers A1, . . . , An, we cross multiply both
sides of the equation by the denominators, and then substitute in the
values a1, . . . , an which will allow us to ultimately solve for A1, . . . , An.
We illustrate by example.

Example 2.1. Recall

3x3
− 2x + 2

x3
− 3x2 + 2x

= 3 +
9x2

− 8x + 2

x3
− 3x2 + 2x

= 3 +
9x2

− 8x + 2

x(x − 2)(x − 1)

It follows that

9x2
− 8x + 2

x(x − 2)(x − 1)
=

A

x
+

B

x − 2
+

C

x − 1
.

Clearing denominators, we get

9x2
− 8x + 2 = A(x − 2)(x − 1) + Bx(x − 1) + Cx(x − 2).

Substituting in x = 0, we get 1 = A(−2)(−1) = 2A, so A = 1. Substi-
tuting x = 1, we get 3 = −C or C = −3. Finally, substituting x = 2,
we get 22 = 2B or B = 11. Thus we get

3x3
− 2x + 2

x3
− 3x2 + 2x

= 3 +
1

x
+

11

x − 2
−

3

x − 1
.

Using this method of partial fractions, we can now integrate any func-
tion of this form as follows:

Example 2.2.
∫

3x3
− 2x + 2

x3
− 3x2 + 2x

dx =

∫

3 +
1

x
+

11

x − 2
−

3

x − 1
dx

= 3x + ln(x) + 11 ln(x − 2) − 3 ln(x − 1) + C

3. q(x) is a product of linear factors

q(x) is a product of linear factors, some of which are repeated (so
q(x) = (x − a1)

n1 . . . (x − ar)
nr). This case is similar to the last, the

only difference is the fact that we need to take into account that larger
powers of linear factors can occur. For ease, we discuss how to evaluate
each linear factor.
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It is a fact from algebra that if (x− a)r) is a linear factor of q(x), then
when reduced into partial fractions, p(x)/q(x) will contain terms of the
form

A1

(x − a)
+

A2

(x − a)2
+

A3

(x − a)3
+ · · · +

Ar

(x − a)r
.

Once this is done, we can use logarithms or substitution and the power
rule to evaluate the integrals. Again, to show how this works, we
illustrate by example.

Example 3.1. Find
∫

x2

(x − 3)(x − 2)2
dx

First we observe that

x2

(x − 3)(x − 2)2
=

A

(x − 3)
+

B

(x − 2)
+

C

(x − 2)2

Clearing denominators, we get

x2 = A(x − 2)2 + B(x − 2)(x − 3) + C(x − 3).

Substituting x = 2 gives 4 = −C or C = −4, and substituting x = 3,
we get 9 = A. To find B, we substitute x = 0 giving, 0 = 9∗4+6B+4∗3
or B = −8. Thus

x2

(x − 3)(x − 2)2
=

9

(x − 3)
−

8

(x − 2)
−

4

(x − 2)2
.

Therefore,
∫

x2

(x − 3)(x − 2)2
dx =

∫

9

(x − 3)
−

8

(x − 2)
−

4

(x − 2)2
dx

= 9 ln(x − 3) − 8 ln(x − 2) +
4

(x − 2)
+ C

Now (in principle) we can integrate any rational function provided
the factors of the denominator q(x) are only linear. The only other
possibility is that there are quadratic factors in q(x) which will not
reduce. We consider this case now.

4. q(x) contains non-reducible quadratic factors, none of

which are repeated

If ax2 + bx + c is one such factor, then the fraction

Ax + B

ax2 + bx + c

appears in the partial fraction expansion for R(x) (note that we must
have b2

− 4ac < 0, else it has roots and can be factored). The method
of partial fractions is identical as with other cases, though when it
comes to evaluating the integral, it is a little more complicated. We



5

illustrate with a couple of examples, first how to perform the integrals
and secondly how to evaluate the partial fractions and perform the
integrals.

Example 4.1. How do we integrate

Ax + B

ax2 + bx + c

if b2
− 4ac < 0? We complete the square and use a special kind of

substitution.
First observe that

Ax + B

ax2 + bx + c
=

1

a

Ax + B

x2 + bx/a + c/a
,

so since integrals are linear over constant multiples, we may assume
a = 1, so we are trying to integrate

Ax + B

x2 + bx + c
.

Completeing the square on the denominator, we get

Ax + B

(x + b/2)2
− b2/4 + c

.

We make the substitution u = x+ b/2, so x = u− b/2, giving du = dx.
Then,

∫

Ax + B

(x + b/2)2
− b2/4 + c

dx =

∫

A(u − b/2) + B

u2 + (c − b2/4)
du

=

∫

Au + (B − Ab/2)

u2 + (c − b2/4)
du = A

∫

u

u2 + (c − b2/4)
du+

∫

B − Ab/2

u2 + (c − b2/4)
du.

Observe that we can integrate both of these integrals. In particular,
one is a logarithm and the other is an inverse tangent. That is:

A

∫

u

u2 + (c − b2/4)
du =

A ln(u2 + (c − b2/4))

2

and

=
A ln((x + b/2)2 + (c − b2/4))

2
,

and
∫

B − Ab/2

u2 + (c − b2/4)

is an inverse tangent (though more complicated, so instead we shall
look at examples!).
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Example 4.2. Find the integral
∫

x

x2 + 4x + 8
dx.

We first observe that b2
− 4ac = 16 − 32 < 0, so the denominator

is an irreducible quadratic, so the method of partial fractions is not
required. In order to integrate a function of this form, we need to use
substitution and the method of completing the square. We use the
following protocol:

(i) Complete the square of the denominator: x2 + 4x + 8 = (x +
2)2

− 4 + 8 = (x + 2)2 + 4.
(ii) Make the substitution u = x + 2, so du = dx and x = u − 2:

∫

x

x2 + 4x + 8
dx =

∫

u − 2

u2 + 4
du

(iii) Break the fraction up into two different integrals
∫

u

u2 + 4
du −

∫

2

u2 + 4
du.

The first integral is a logarithmic substitution, the second is
an inverse tangent substitution.

(iv) For the first integral, we have
∫

u

u2 + 4
du =

ln(u2 + 4)

2
.

(v) For the second integral, we have

−2

∫

1

u2 + 4
du,

so we set v = u/2 so du = 2dv, giving

−2

∫

1

u2 + 4
du = −4

∫

1

4v2 + 4
dv = −

∫

1

v2 + 1

= − arctan(v) = − arctan(u/2)

(vi) Thus
∫

x

x2 + 4x + 8
dx =

ln(x2 + 4x + 8)

2
− arctan(

x + 2

2
) + C

Example 4.3. Evaluate
∫

x

(x2 + 2x + 2)(x − 1)
dx

First note that b2
− 4ac = 4− 8 = −4 < 0, so x2 + 2x + 2 is irreducible

as a quadratic function. Therefore, we need to apply the method of
partial fractions:

x

(x2 + 2x + 2)(x − 1)
=

Ax + B

x2 + 2x + 2
+

C

x − 1
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giving x = (Ax+B)(x−1)+C(x2 +2x+2). Substituting x = 1, we get
1 = 5C or C = 1/5. Substituting x = 0, we get 0 = −B + 2/5 or B =
2/5. Finally, substituting x = −1, we get −1 = (−A + 2/5)(−2) + 1/5
or 2A = −1 − 1/5 + 4/5 = 2/5, so A = 1/5. Thus we have

x

(x2 + 2x + 2)(x − 1)
=

x + 2

5(x2 + 2x + 2)
+

1

5(x − 1)
.

In order to integrate, we need to use some trigonometric identities and
the method of completing the square.
First observe that the last integral is a simple logarithmic substitution
(the integral being (ln(x − 1))/5), so we only concern ourselves with
the last integral. In this case, we proceed as follows:

(i) We complete the square of the denominator: x2 + 2x + 2 =
(x + 1)2 + 1.

(ii) Next we make a u substitution for the linear term resulting
from completing the square: u = x + 1, so du = dx and
x = u − 1, giving

1

5

∫

x + 2

(x2 + 2x + 2)
dx =

∫

u + 1

u2 + 1
du

=
1

5

[
∫

u

u2 + 1
du +

∫

1

u2 + 1
du

]

(iii) Now observe that the first integral is a simple logarithmic sub-
stitution and the second is an inverse tangent:

1

5

[

ln(u2 + 1)

2
+ arctan(u)

]

=
ln(x2 + 2x + 2)

10
+

arctan(x + 1)

5
+ C

Thus
∫

x

(x2 + 2x + 2)(x − 1)
dx

=
ln(x2 + 2x + 2)

10
+

arctan(x + 1)

5
+

ln(x − 1)

5
+ C

5. q(x) has quadratic powers which may be repeated

In this case, if (ax2 + bx + c)r is a factor of q(x) where ax2 + bx + c is
irreducible, then the terms

A1x + B1

(ax2 + bx + c)
+

A2x + B2

(ax2 + bx + c)2
+

A3x + B3

(ax2 + bx + c)3
+· · ·+

Arx + Br

(ax2 + bx + c)r

appear in the partial fraction decomposition of R(x). The calculations
are exactly the same as the previous cases, so to illustrate, we show
one easy example.
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Example 5.1. Evaluate the integral
∫

x3

(x2 + 1)2
dx.

For this, we need to use the method of partial fractions. We observe
that

x3

(x2 + 1)2
=

Ax + B

x2 + 1
+

Cx + D

x2 + 1
.

Clearing denominators, we get x3 = (Ax + B)(x2 + 1) + (Cx + D).
From this point we need to solve for A, B, C and D by evaluating
the functions at different points. Plugging in x = 0, we get B = −D.
Plugging in x = 1, we get 1 = 2(A + B) + (C − B), for x = −1 we
get −1 = 2(−A + B) + (−C − B) and plugging in x = 2, we get
8 = 5(2A + B) + (2C − B). Solving these equations, we get A = 1,
B = 0, C = −1 and D = 0, so

x3

(x2 + 1)2
=

x

x2 + 1
−

x

(x2 + 1)2
.

Integrating, we get
∫

x3

(x2 + 1)2
dx =

∫

(
x

x2 + 1
−

x

(x2 + 1)2
)dx

=
ln(x2 + 1)

2
+

1

2(x2 + 1)
+ C

This covers all possible scenarios for partial fractions. Remember, the
method is the most important aspect of partial fractions - the point
being that in principle any rational function can be integrated - though
in practicality outside of homework, the problems I give you will be
fairly straight forward. We finish with a different type of application
for partial fractions.

6. Functions which are almost Rational

Similar methods to the ones we have used for rational functions can also
be used for functions which are quotients of other functions though not
necessarily rational (so not a quotient of polynomials). We illustrate
by example.

Example 6.1. Evaluate
∫

1

x
√

(x + 1)
dx.

Here we make the substitution u =
√

(x + 1), so u2 = x + 1 giving
x = u2

− 1 and 2udu = dx. Evaluating, we get
∫

1

x
√

(x + 1)
dx =

∫

1

(u2
− 1)u

2udu = 2

∫

1

(1 − u)(1 + u)
du.
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Using partial fractions, we get 1/(u−1)(u+1) = A/(u−1)+B/(u+1),
so 1 = A(u+1)+B(u−1). Making the substitution u = 1 gives A = 1/2
and u = −1 gives B = −1/2. Thus

∫

1

x
√

(x + 1)
dx = 2

∫

1

(u − 1)(u + 1)
du

=

∫

1

u − 1
−

1

u + 1
du = ln(u − 1) − ln(u + 1) + C

= ln(
(
√

(x + 1) − 1)

(
√

(x + 1) + 1)
) + C


