
Section 7.7: Approximate Integration

1. The Definite Integrals

Before we start, we recall the definition of a Riemann sum. Suppose
that f(x) is a continuous function on some interval [a, b]. Break [a, b]
up into n subintervals [x0, x1], [x1, x2], . . . , [xn−1, xn] where the interval
finishing at xi has length ∆xi (though we usually do, there is no reason
why we should insist that the intervals have equal length). For each
interval [xi, xi+1], we choose a point x∗

i+1 in that interval. We then
define the definite integral of f(x) over [a, b] to be

lim
n→∞

n
∑

i=1

f(x∗

i
)∆x∗

i

where the limit means we are taking more and more subdivisions.
Graphically we have the following:

When we initially introduced the idea of a definite integral, we usually
insisted that the intervals have equal length. In addition, though in
principle x∗

i could be anything, we only really considered two possible
choices.

(i) Left Hand Sum: We take the values x∗

i
to be the left hand end

point of each interval.
(ii) Right Hand Sum: We take the values x∗

i
to be the right hand

end point of each interval.

Each of these sums were good under certain circumstances, but there
are lots of examples where none of them give a very accurate answer.
For example, in the figure below, if we took 4 subdivision and took left
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and right hand sums, they would both be very inaccurate because the
endpoints are precisely where the minimum values are taking place.

−2−4 2 4

With this example in mind, it seems like a good to have as many other
types of sum as possible to obtain the best approximation. In this
section we shall consider three different types of sum, one called the
midpoint rule, one the Trapezoid Rule and the other Simpsons Rule.

2. The Midpoint and Trapezoid Rules

The midpoint rule is the easiest to understand (and you may have ac-
tually considered it too!). Instead of taking left or right hand endpoints
in the interval, we use the midpoints in the Riemann sum. The basic
idea is that by using the midpoint, we will reduce the error because we
will ”lose” some area and ”gain” some area, hopefully cancelling out
to give a better approximation (see illustration below).

Result 2.1. The midpoint rule:

∫

b

a

= lim
n→∞

∆x

[

f(x∗

1) + f(x∗

2)) + · · · + f(x∗

n−1) + f(x∗

n
)

]
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where x∗

i is the midpoint of the ith interval.

Example 2.2. Excluding linear functions, there are four basic shapes
for graphs depending upon concavity and whether it is increasing or
decreasing. Discuss the accuracy of the midpoint rule over the four
different types of shapes and in particular whether or not it gives and
overestimate, underestimate or whether that is undetermined.

(i) CU/DEC - Underestimate
(ii) CU/INC - Underestimate
(iii) CD/DEC - Overestimate
(iv) CD/INC - Overestimate

Suppose that f(x) is a continuous function on [a, b]. We can construct
a Riemann sum by instead of taking a sum of rectangles, taking a sum
of trapezoids which better fit the graph. In general, if we divide [a, b] up
into n intervals, instead of a rectangle with the height determined by a
point in each interval, for the interval [xi, xi+1], we take the trapezoid
over the interval [xi, xi+1] bounded by the x-axis and the line connecting
f(xi) and f(xi+1) (see illustration).

We need to work out the area of each trapeziod. However, from elemen-
tary geometry, the area of this trapezoid will be (f(xi)+f(xi+1))∆x/x.
Summing up the areas of all the trapezoids, we get the total area. Ob-
serve unless i = 0 or i = n, the value f(xi) will appear twice in the
sum (it will be the left hand side of one trapezoid and the right hand
side for another trapezoid). Letting ∆x− > 0, we get

Result 2.3. The trapezoid rule:

∫

b

a

= lim
n→∞

∆x

2

[

f(x0) + 2f(x1)) + 2f(x2) + · · · + 2f(xn−1) + 2f(xn)

]
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Observe that the trapezoid rule is very useful because it does not ap-
proximate using rectangles, but instead trapezoids, so we would expect
the errors to be a lot less than the errors generated by the left and
right hand sums. We look at an example.

Example 2.4. Excluding linear functions, there are four basic shapes
for graphs depending upon concavity and whether it is increasing or
decreasing. Discuss the accuracy of the trapezoid rule over the four
different types of shapes and in particular whether or not it gives and
overestimate, underestimate or whether that is undetermined.

(i) CU/DEC - Overestimate
(ii) CU/INC - Overestimate
(iii) CD/DEC - Underestimate
(iv) CD/INC - Underestimate

We now look at a couple of examples of explicit calculations.

Example 2.5. (i) Find the values for the Midpoint and Trape-
zoid of the function f(x) = x2 with subinterval endpoints
{0, 1, 3, 4}.

First observe that this is not a symmetrical interval, so we
cannot use a calculator and we need to modify the formulas
for trapezoid and midpoint. We evaluate by hand (remember,
the area of a trapezoid = (f(xi) + f(xi+1))∆x/2).

Midpoint = 1(1/2)2 +2(2)2 +1(7/2)2 = 1/4+8+12+1/4 =
20 + 1/2

Trapezoid = 1(0 + 1)/2 + 2(1 + 9)/2 + 1(9 + 16)/2 = 23
(ii) Determine whether trapezoid or midpoint gives the best ap-

proximation to the integral
∫ 3

0
3x2−2xdx for the values n = 10

and n = 100.
First we need to calculate he actual value of this integral,

and for this we use the fundamental theorem of calculus:
∫ 3

0

3x2 − 2xdx =

[

x3 − x2

]3

0

= 27 − 9 = 18.

Using the calculator, for n = 10, we get TRAP = 18.36,
so the error is 0.36, and MID = 17.93, so the error is 0.07.
For n = 100, we get TRAP = 18.001, so the error is .001 and
MID = 17.9993, so the error is 0.0007. Observe that in both
cases, the midpoint rule gives us the better approximation.

In both cases, we saw that the error term of the midpoint rule was less
than the trapezoid rule, so the midpoint rule is generally the better to
use when trying to get the best approximation. In fact, you can use
mathematics to work out an explicit bound for an error term which
depends upon the second derivative of a function and the number of
subintervals taken.
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Result 2.6. Suppose |f ′′(x)| 6 K for a 6 x 6 b. If ET and EM are
the errors in the Trapezoid and Midpoint Rules, then

|ET | 6
K(b − a)3

12n2

and

|EM | 6
K(b − a)3

24n2

(so in fact the midpoint is generally twice as good as the trapezoid).

These error bounds are very useful when trying to determine the num-
ber of subdivisions required to get the trapezoid or midpoint rules
within a certain distance of the actual answer. We illustatrate with an
example.

Example 2.7. Determine the number of subdivisions required to guar-
antee the trapezoid and midpoint rules will be within 0.001 of the actual

value of
∫ 4

0
exdx.

First, we observe that f ′′(x) = ex, so f ′′(x) 6 e4 6 54.6 on [0, 4]. We
want |ET | 6 0.001 and |EM | 6 0.001, so we should set

K(b − a)3

12n2
6

54.6 ∗ 64

12n2
=

291

n2
6 0.001

, so 291/0.001 6 n2, or n > 540 and

K(b − a)3

24n2
6

145

n2
6 0.001

so 145/0.001 6 n2 or n > 380.

3. Simpsons Rule

We have discovered the following:

(i) The Midpoint rule as a whole is a better approximation by a
factor of 2 than the Trapezoid rule.

(ii) For the different shapes of graphs, whenever MID is an over/underestimate,
TRAP is an under/overestimate.

We put these two facts together to develop a third rule which is more
accurate than any of those we have seen before.

Result 3.1. We define Simpsons rule as

SIMP (2n) =
2MID(n) + TRAP (n)

3

So Simpsons rule takes the average of two midpoints and one trapeziod
(which reflects precisely what we observed above).
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Warning. There are two common definitions for Simpsons rule: what
we have defined for SIMP (2n), some books and computer programs
means SIMP (n) (so you may see examples on webwork where instead
of 100 intervals, in order to get the correct answer, you need to use 50
intervals). If in doubt, try both.

Provided we can use MID and TRAP , SIMP is also very easy (we
just need to be careful that when calculating SIMP (100) for example,
we need to use TRAP (50) and MID(50). Just as with TRAP and
MID, an error bound can be calculated which depends only upon the
number of subintervals used and this time the fourth derivative.

Result 3.2. Suppose |f 4(x)| 6 K for a 6 x 6 b. If |ES| is the error

involved using Simpsons rule, then |ES| 6
K(b−a)5

180n4 .

We finish with an example of how to use the error bound.

Example 3.3. How many subdivisions should be used to guarantee
that SIMP will be within 0.001 of the actual value of

∫ 4

0
exdx?

This is the same as the other examples:

|ES| 6
54.6 ∗ 1024

180n4
=

311

n4
6 0.001

so n4 > 31100, or n > 24. This means when using the formula, we
would have SIMP (24) = SIMP (2∗12) = (2MID(12)+TRAP (12))/3.
Checking, we get SIMP (24) = (2 ∗ 53.35 + 54.09)/(3) = 53.5967.


