
Section 15.4
Tangent Planes and Linear Approximations

“Generalizing the Tangent Line”
Recall that one of the primary results in Calculus 1 was to approximate
functions with lines. Specifically, the tangent line to a function at a
point. We generalize this idea to functions of more than one variable.

1. Tangent Planes

Suppose a surface S has equation z = f(x, y) where f is continuous
and differentiable. Let P (x0, y0, z0) be a point on S. We want to define
the tangent plane of S at P to be the plane which best approximates
S at P . We do this as follows:

• In the plane y = y0, there is a 2-d curve defined by z = f(x, y0).
At the point P , we can find the tangent line to this curve using
partial derivatives - call it T1.

• In the plane x = x0, there is a 2-d curve defined by z =
f(x0, y). At the point P , we can find the tangent line to this
curve using partial derivatives - call it T2.

• For T1 and T2, we can find the direction vectors. Specifically,

we shall have ~v1 = ~i + fx
~k as the direction vector in the x

direction and ~v2 = ~j + fy
~k in the y-direction (WHY?)

• We define the tangent plane T to be the plane which contains
both vectors ~v1 and ~v2.

Note that this will always give use a plane because the two vectors
determined above will never be parallel and neither will ever be ~0
(WHY?). Calculation of an equation for the tangent plane is fairly
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straight forward using vector operations. Specifically, we first find the
normal vector to the plane:

~v1 × ~v2 = (~i + fx
~k)× (~j + fy

~k) =~i×~j +~i× fy
~k + fx

~k ×~j + fx
~k × fy

~k

= −fx
~i − fy

~j + ~k

Then we apply the ”point-slope” form for planes giving the following
equation:

−fx(x − x0) − fy(y − y0) + (z − z0) = 0

However, since we are considering this as a tangent plane to a surface
at a point, we usually write it in a different way to reflect the tangent
line equation we usually use in single variable calculus. Specifically, we
have:

Result 1.1. Suppose f has continuous partial derivatives. An equation
for the tangent plane to z = f(x, y) at P (x0, y0, z0) is

z − z0 = fx(x − x0) + fy(y − y0).

Example 1.2. Find an equation for the tangent plane to f(x, y) =
x2

− y2 at the point (1, 1, 0).

We have fx(1, 1) = 2, and fy(1, 1) = −2, so the tangent plane has
equation 2(x − 1) − 2(y − 1) = z.

Example 1.3. You are trying to approximate the tangent plane to a
hill at the point you are stood. You know if you move north 2 miles,
you will gain 1/2 mile elevation and if you walk east 3 miles, you lose
1/2 mile elevation. Assuming you are stood at the origin, what is an
approximation for the equation of the tangent plane to the hill where
you are stood.

Let x be in the East direction and y in the North direction. Then
fx ∼ (1/2)/3 = 1/6 and fy = (1/2)/2 = 1/4. Thus the equation for
the tangent plane at this point will be
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y = z.

2. Linear Approximations and Differentiability

In the previous sections, we derived the equation for the equation of
a tangent plane to a surface at a point. One of the most important
uses for tangent planes is that they approximate values of functions
provided you are fairly close to the point of the tangent plane. This
motivates the following definition.



3

Definition 2.1. Suppose f(x, y) has continuous partial derivatives and
P (x0, y0, z0) is a point on S. Then the tangent plane

L(x, y) = fx(x − x0) + fy(y − y0) + z0

is called the linearization or linear approximation of f at (x0, y0).
Specifically, provided (a, b) is close to (x0, y0), we have L(a, b) ∼ f(a, b).

Recall that a function of a single variable is differentiable if the deriv-
ative exists, or equivalently, the tangent line exists. This is not quite
the same for functions of more than one variable because there is more
than one variable to differentiate with respect to. Therefore, we need
to modify the definition of the derivative. Though the original defini-
tion does not work, the extended one does - specifically, we have the
following:

Definition 2.2. We say f is differentiable at (a, b) if the tangent plane
exists at (a, b).

Sufficient conditions for a function f(x, y) to be differentiable are the
following:

Result 2.3. If the partial derivatives fx and fy exist near (a, b) and
are continuous at (a, b), then f is differentiable at (a, b).

Example 2.4. Show that f(x, y) = exy is differentiable, write down
the linear approximation to f at (0, 3) and use it to approximate
f(0.1, 3.1).

We have fx = exy and fy = ex, both of which are continuous. Thus by
the last result, f is differentiable.

We have fx(0, 3) = 3 and fy(0, 3) = 1, so the linear approximation is
L(x, y) = 3x + (y − 3) + e0

∗ 3 = 3x + y. This gives L(0.1, 3.1) =
0.3+3.1 = 3.4 (note that 3.1 ∗ e0.1 = 3.42, so there is an error of 0.02).

3. Differentials

Recall that in single variable calculus, the differential of a function is
the functgion dy = f ′(x)dx, and it is used to measure small changes
in a function y given a small change in the variable x (so dy and dx
are considered variables). As with single variables, we can define the
differential of a function of two variables (or more). We define it in a
similar way to the single variable case.

Definition 3.1. The differential of f at a point is defined to be

dz = fxdx + fydy

where dx and dy are variables.
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We think of dx and dy as changes in x and y, and dz as measuring the
resultant change in z due to these changes in x and y. One important
application of differentials is the ability they have to measure error
terms when we are given approximate values of a function and bounds
on the error. We illustrate.

Example 3.2. Find the differential of f(x, y) = exy + y2x.

dz = fxdx + fydy = (yexy + y2)dx + (xexy + 2xy)dy.

Example 3.3. The measurements of a closed rectangular box are mea-
sured as H = 80cm, W = 60cm and D = 50cm respectively with an
error measurement of at most 0.1cm in each. Use differentials to esti-
mate the maximum error in calculating the surface area of the box.

We have SA = 2WH + 2WD + 2DH where W is the width, H is
the height and D is the depth. This gives the differential d(SA) =
(2H + 2D)dW + (2W + 2D)dH + (2W + 2H)dD. We know H ∼ 80,
W ∼ 60 and D ∼ 50, and dH = dW = dD 6 0.1, so d(SA) 6

.4 ∗ 80 + .4 ∗ 60 + .4 ∗ 50 = 76.

4. Functions of More Variables

We can define the linear approximation of a function of n variables in
exactly the same way as for two variables. Specifically, we define:

Definition 4.1. If the partial derivatives of f(x1, . . . , xn) are contin-
uous at P (a1, . . . , an, an+1), we define the linear approximation of f at
P to be the function

L(x1, . . . , xn) = fx1
(x1 − a1) + · · ·+ fxn

(xn − an) + an+1

Calculations are identical to the case where f is a function of two
variables.


