
Section 16.6
Triple Integrals

“Integrating Functions of three Variables”

In this section we consider integrating functions of three variables over
a region in 3-space. We shall be using the ideas developed for a function
of two variables, so we shall omit most of the proofs and explanations
referring to the function of two variables case. The biggest difference in
this case is that there is not really a very viable geometric description
of an integral of a function of three variables - it does not represent
volume or area, but a 4-dimensional analogue of this (sometimes density
or time).

1. Triple Integrals over Boxes

Like with double integrals, we start by looking at integrals over fairly
easy regions. Suppose that B is a box in 3-space given by [a, b]× [c, d]×
[e, f ] and f(x, y, z) is continuous on B. Then we define a triple integral
as follows:

Definition 1.1.
∫ ∫ ∫

f(x, y, z)dV = lim
l,m,n→∞

l
∑

i=1

m
∑

j=1

n
∑

i=1

f(x̄i, ȳjz̄k)∆x∆y∆z

where (x̄i, ȳj, z̄k) are fixed points in the ijk-th subbox after we subdi-
vide B into subboxes of side lengths ∆x = (b − a)/n, ∆y = (d − c)/m
and (f − e)/l = ∆z provided this limit exists.

Just as with double integrals, when evaluating a triple integral, we can
use Fubini’s Theorem.

Result 1.2.
∫ ∫ ∫

f(x, y, z)dV =

∫ f

e

∫ d

c

∫ b

a

f(x, y, z)dxdydz

(or any other order).

We illustrate with an example.

Example 1.3. Evaluate the triple integral
∫ ∫ ∫

B

(xy + z)dV

where B = [0, 1] × [0, 1] × [−1, 1].
To do this, we use Fubini’s Theorem.

∫ ∫ ∫

B

(xy+z)dV =

∫ 1

−1

∫ 1

0

∫ 1

0

(xy+z)dxdydz =

∫ 1

−1

∫ 1

0

[

x2y

2
+zx

]1

0

dydz

1



2

=

∫ 1

−1

∫ 1

0

(
y

2
+z)dydz =

∫ 1

−1

[

y2

4
+zy

]1

0

dz =

∫ 1

−1

(
1

4
+z)dz =

[

z

4
+

z2

2

]1

−1

=
1

2

2. Triple Integrals over General Regions

The real difficulty of triple integrals arises when we are integrating
over regions which are not boxes (as with double integrals). Similar
to double integrals, we shall break triple integrals into three different
cases. Remember that since we already know how to evaluate a double
integral, the only part of the iterated integral we need to learn how to
evaluate is the first of the three integrals (because once this is evaluated,
we are left with a double integral).

2.1. Triple Integrals of Type 1. Suppose that R is some general
region in 3-space. We say it is of type 1 if it lies between the graphs of
two continuous functions u1(x, y) and u2(x, y) as illustrated below.

Such a region is described by

{(x, y, z)|(x, y) ∈ D, u1(x, y) 6 z 6 u2(x, y)}
where D is the projection of R onto the xy-plane. Therefore, the upper
z value in R foir a fixed value of x and y in D is u2(x, y) and the lower
limit is u1(x, y). This means by a similar argument to the function of
two variables case, if R is of type 1, then it can be evaluated as follows:

Result 2.1.
∫ ∫ ∫

R

f(x, y, z)dV =

∫ ∫

D

[
∫ u2(x,y)

u1(x,y)

f(x, y, z)dz

]

dA

where D is the projection of R in the xy-plane.

Observe that the remaining integral is a double integral in the plane,
so we can use the methods we developed in the previous sections to
evaluate this integral as a type 1 or type 2 double integral. We illustrate
with some examples.
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Example 2.2. (i) Evaluate the integral
∫ ∫ ∫

R

6xydV

where R lies under the plane z = 1+x+y and above the region
in the xy-plane bounded by the curves z =

√
x and x = 1.

This is a triple integral of type 1 with 0 6 z 6 1 + x + y.
The double integral is of type 1 as well with 0 6 y 6

√
x and

0 6 x 6 1 (see illustration).

∫ ∫ ∫

R

6xydV =

∫ 1

0

∫

√
x

0

∫ 1+x+y

0

(6xy)dzdydx =

∫ 1

0

∫

√
x

0

(6xy+6x2y+6xy2)dydx

=

∫ 1

0

[

3xy2+3x2y2+2xy3

]

√
x

0

dx =

∫ 1

0

(3x2+3x3+2x
5

2 )dx =

[

x3+
3x4

4
+

4x
7

2

7

]1

0

=
65

28

(ii) Set up an integral of f(x, y, z) over the ice cream cone bounded
between the unit sphere x2 + y2 + z2 = 1 and the cone z =
√

x2 + y2.

This is a triple integral of type 1. Observe that
√

x2 + y2 6

z 6
√

1 − x2 − y2. To find the projection of the region in the
xy-plane, we observe that it must be bounded by the projec-
tion of the intersections of the two curves i.e the points of the
sphere where z =

√

x2 + y2. Plugging into the equation for
the sphere, we have x2 + y2 + x2 + y2 = 2, or x2 + y2 = 1/2.
Thus the projection is a circle of radius 1/

√
2. This can be

interpreted as an integral of type 2 or 1. We use type 2 giving
−

√

1/2 − y2 6 x 6
√

1/2 − y2 and −1/
√

2 6 y 6 1/
√

2, so
we get

∫ 1
√

2

− 1
√

2

∫

√
1

2
−y2

−
√

1

2
−y2

∫

√
1−x2−y2

√
x2+y2

f(x, y, z)dzdxdy
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2.2. Triple Integrals of Type 2 and 3. Integrals of type 2 and 3 are
similar to type 1, the only difference being that the region is bounded
by either functions of y and z (Type 2) or x and z (Type 3), see the
illustrations below.

Type 2 Type 3

h1(y, z) 6 x 6 h2(y, z) g1(x, z) 6 y 6 g2(x, z)

Because they are all very similar, we illustrate with just a single exam-
ple of Type 2.

Example 2.3. Evaluate
∫ ∫ ∫

R

xdV

where R is bounded by the paraboloid x = 4y2 + 4z2 and the plane
x = 4.

Here we have 4y2 + 4z2 6 x 6 4, and the projection of the region into
the yz-plane is the circle 4y2 + 4z2 = 4 or y2 + z2 = 1. We can bound
this as −

√

1 − y2 6 z 6
√

1 − y2 and −1 6 y 6 1. Thus we have

∫ 1

−1

∫

√
1−y2

−
√

1−y2

∫ 4

4y2+4z2

xdxdzdy =

∫ 1

−1

∫

√
1−y2

−
√

1−y2

x2

2

∣

∣

∣

∣

4

4y2+4z2

dzdy

=

∫ 1

−1

∫

√
1−y2

−
√

1−y2

8 − (4y2 + 4z2)2

2
dzdy

Since this is a circular region, we can use a polar integral. Specifically,
we use y = r cos (ϑ) and z = r sin (ϑ), so

∫ 2π

0

∫ 1

0

(

8 − (4r2)2

2

)

rdrdϑdzd =

∫ 2π

0

∫ 1

0

(8r − 8r5)drdϑ

= 2π

[

4r2 − 4r6

3

]1

0

= 2π
8

3
=

16π

3

3. Applications of Triple Integrals

We finish by considering a couple of applications of triple integrals.
First we observe that the integral of the constant function f(x, y, z) = 1
will give the volume of the region we are integrating over. We illustrate.
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Example 3.1. Find the volume of the solid bounded by the surface
y = x2 and the planes z = 0, z = 4 and y = 9.

We need to evaluate
∫ ∫ ∫

r

1dV

where R is the region described. Over this region, we have −3 6 x 6 3,
x2 6 y 6 9 and 0 6 z 6 4. Thus we get

V =

∫ 4

0

∫ 3

−3

∫ 9

x2

1dydxdz =

∫ 4

0

∫ 3

−3

(9−x2)dxdz = 4

[

9x−x3

3

∣

∣

∣

∣

3

−3

]

= 144

One practical application of integration of a function of three variables
is finding the mass. If the density of a solid S is given by ̺(x, y, z),
then the mass of the solid can be calculated by integrating the density
function over the solid. We illustrate.

Example 3.2. Suppose S is the cube with side lengths 2 centered at
the origin. If the density of the cube is ̺(x, y, z) = x2+y2+z2, calculate
the mass of the cube.

Observe that this function is symmetric across all eight octants, so we
just need to find

8

∫ 1

0

∫ 1

0

∫ 1

0

(x2 + y2 + z2)dxdydz = 8

∫ 1

0

∫ 1

0

(
x3

3
+ y2x + z2x

∣

∣

∣

∣

1

0

)dydz

= 8

∫ 1

0

∫ 1

0

(
1

3
+ y2 + z2)dydz = 8

∫ 1

0

∫ 1

0

(
y

3
+

y3

3
+ z2y

∣

∣

∣

∣

1

0

)dz

= 8

∫ 1

0

(
2

3
+ z2)dz = 8(

2

3
+

z3

3

∣

∣

∣

∣

1

0

) =
16

3

Other Examples:

(i) Set up a triple integral for a function f(x, y, z) over the unit
ball x2 + y2 + z2 6 1.

(ii) Set up two triple integrals of f(x, y, z) over the cylinder x2 +
y2 6 1 using Cartesian coordinates for the first and then using
polar coordinates for the second.


