
Section 17.5
Curl and Divergence

“New Tools for Line Integrals”

In the last section, we used the 2-d curl to transform a line integral
over a closed curve into a double integral over the region inside the
curve. We also used the 2-d curl to determine whether a vector field
was conservative. In this section we consider two new functions (one
a scalar function and the other a vector function) which we shall be
able to use to transform complicated vector integrals into much more
straightforward integrals over regions and determine whether a vector
field is conservative.

1. Curl

We start with a definition.

Definition 1.1. Suppose ~F = P~i + Q~j + R~k is a differentiable vector
field. Then we define the curl of ~F as the vector function

curl(~F ) =

(

∂R

∂y
−

∂Q

∂z

)

~i +

(

∂P

∂z
−

∂R

∂x

)

~j +

(

∂Q

∂x
−

∂P

∂y

)

~k.

The formula for the curl is very long, so it would be useful to have a was
to remember it. This can be done through a cross product. Specifically,
if we define

∇ =
∂

∂x
~i +

∂

∂y
~j +

∂

∂z
~k,

then we have
curl(~F ) = ∇× ~F .

We consider an example.

Example 1.2. Calculate the curl of ~F = xyz~i − x2y~k.

Using the formula, we have

curl(~F ) =

(

∂R

∂y
−

∂Q

∂z

)

~i +

(

∂P

∂z
−

∂R

∂x

)

~j +

(

∂Q

∂x
−

∂P

∂y

)

~k

= (−x2 − 0)~i + (xy + 2xy)~j + (−xz)~k = −x2~i + 3xy~j − xz~k

The following theorem is a generalization of the 2-d case and is a con-
sequence of Clairuts Theorem.

Result 1.3. If f is a function of three variables that has continuous
second order partial derivatives, then

curl(∇f) = ~0

More importantly, this gives us a way of determining whether or not a
3-d vector field is conservative.
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Result 1.4. If ~F is a vector field defined on all of R
3 whose component

functions have continuous partial derivatives and curl(~F ) = ~0, then ~F

is a conservative vector field.

We consider an example.

Example 1.5. Show that the vector field ~F = ex sin (y)~i+ex cos (y)~j+

z~k. is conservative and determine a potential function.

Clearly the partial derivatives are continuous, so using the formula, we
have

curl(~F ) =

(

∂R

∂y
−

∂Q

∂z

)

~i +

(

∂P

∂z
−

∂R

∂x

)

~j +

(

∂Q

∂x
−

∂P

∂y

)

~k

= (0 − 0)~i + (0 − 0)~j + (ex cos (y) − ex cos (y))~k = ~0,

so the vector field is conservative. A potential function for this vector
field is

f(x, y, z) = ex sin (y) +
z2

2
.

2. Divergence

Next we introduce a new idea which will be important in future sec-
tions.

Definition 2.1. Suppose ~F = P~i + Q~j + R~k is a differentiable vector
field. Then we define the divergence of ~F as the scalar function

div(~F ) =
∂P

∂x
+

∂Q

∂y
+

∂R

∂z
.

With ∇ as defined before, the divergence can be remembered via the
formula

div(~F ) = ∇ · ~F .

We consider an example.

Example 2.2. Calculate the divergence of ~F = xyz~i − x2y~k.

Applying the formula, we have

div(~F ) =
∂P

∂x
+

∂Q

∂y
+

∂R

∂z
= yz

The following result again uses Clairats Theorem and gives us a way
to test whether a vector field ~F is the curl is some other vector field ~G

- it will be important in later sections.

Result 2.3. If ~F = P~i + Q~j + R~k and P , Q and R have continuous
second-order partial derivatives, then

div(curl ~F ) = 0.
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This tells us that if
div(~F ) 6= 0

then ~F cannot be the curl of some vector field ~G (it is not a curl field).

Example 2.4. Show that ~F = xyz~i − x2y~k is not a curl field.

As before, we have

div(~F ) =
∂P

∂x
+

∂Q

∂y
+

∂R

∂z
= yz 6= 0,

so it cannot be a curl field.

3. The Vector Form of Green’s Theorem

Recall that Green’s Theorem states that
∫

C

~F · d~r =

∫ ∫

D

∂Q

∂x
−

∂P

∂y
dA.

We referred to the functions ∂Q

∂x
− ∂P

∂y
as the 2-d curl, and the main

reason for doing so is because Green’s Theorem can be restated in
terms of the 3-d curl. Specifically, we have the following:

Result 3.1.
∫

C

~F · d~r =

∫ ∫

D

(curl ~F ) · ~kdA.

This formula gives us a nice way to remember Green’s Theorem.


