
Section 17.8
Stokes’ Theorem

“Making Flux Integrals Easy”

Our first approach to line integrals was the brute force method - pa-
rameterize the curve, take the dot product and then integrate. Though
this method is always guaranteed to work, we saw very quickly that it
can take a very long time to do some fairly simple integrals. This led
us to two other ways to calculate line integrals - Green’s Theorem and
the Fundamental Theorem of Calculus for line integrals, both meth-
ods which were much easier than brute force. In the next two sections
we shall consider two different methods to evaluate flux integrals, one
generalizing FTC and the other generalizing Green’s Theorem.

1. Stoke’s Theorem

Before we state Stoke’s Theorem, we need a definition.

Definition 1.1. Suppose S is an oriented surface with orientation ~n

and with boundary B (which is a space curve). Then we define an ori-
entation on B called the induced orientation on B as follows: if we start
walking around B standing in the same direction as the orientation ~n,
then the surface is always on our left.

We look at a couple of examples.

Example 1.2. (i) Find the boundary and the orientation of the
boundary for the unit sphere if it has outward orientation.

The unit sphere has no boundary (it is called a closed sur-
face), so obviously there is no orientation on it.

(ii) Find the boundary and the orientation of the boundary for the
surface z = x2 +y2 over the rectangle [−5, 5]× [−5, 5] sketched
below with downward pointing orientation.
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The boundary of the surface is the edge which consists of
four connected parabolas. Since it is downard orientation, to
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guarantee that the surface is always on the left as we walk
along the boundary, we need to walk in a clcokwise direction.

We are now ready to state Stoke’s Theorem.

Result 1.3. Let S be an oriented piecewise-smooth surface that is
bounded by a simple closed piecewise smooth boundary B with induced
orientation. Let ~F be a vector field whose components have continuous
partial derivatives on an open region in R

3 which contains S. Then
∫

C

~F · d~r =

∫ ∫

S

curl ~F · d~S

Before we look at examples, we make a few remarks about Stoke’s
Theorem.

(i) Observe that Stoke’s Theorem allows us to change a line in-
tegral into a flux integral - this seems like a silly thing to do
since flux integrals are generally much more difficult than line
integrals and is not really the power of Stoke’s Theorem.

(ii) The real power of Stoke’s Theorem is that, provided a field ~G

is a curl field, we can transform a flux integral of G into a line
integral - specifically, if ~G = curl ~F , then

∫

C

~F · d~r =

∫ ∫

S

~G · d~S

(iii) Stoke’s theorem is a generalization of the FTC for line inte-

grals. Specifically, FTC of line integrals says if ~F is a conserva-
tive field, then a line integral of ~F can be evaluated just using
the endpoints of the line (or the boundary of the line). Stoke’s

Theorem says that if ~F is a curl field, then a flux integral of ~F

can be evaluated by converting it into a line integral over the
boundary.

We illustrate with some examples.

Example 1.4. (i) Explain why Stoke’s Theorem cannot be used
to turn the flux integral

∫ ∫

S

x~i + y~j + z~kd~S

into a line integral over the boundary of S.

Recall that div(curl) ~F = 0. However, div(x~i + y~j + z~k) =

3 6= 0, so x~i + y~j + z~k cannot be a curl field, so we cannot
apply Stoke’s Theorem (backwards).

(ii) Use Stoke’s Theorem to evaluate
∫ ∫

S

curl(yz~i + xz~j + xy~k) · d~S
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where S is the part of the paraboloid z = 9− x2 − y2 that lies
above the plane z = 5 oriented upward.

The boundary B of this region is the intersection of the
parabola z = 9 − x2 − y2 with the plane z = 5, so the circle
x2 + y2 = 4 at z = 4. Using Stoke’s Theorem, we have

∫ ∫

S

curl(yz~i + xz~j + xy~k) · d~S =

∫

B

(yz~i + xz~j + xy~k) · d~r

This is a conservative vector field with potential function f(x, y, z) =
xyz and B is a closed curve, so

∫ ∫

S

curl(yz~i + xz~j + xy~k) · d~S =

∫

B

(yz~i + xz~j + xy~k) · d~r = 0

(iii) Use Stoke’s Theorem to evaluate
∫

B

((x + y2)~i + (y + z2)~j + (z + x2)~k) · d~r

where B is the triangle with vertices (1, 0, 0), (0, 1, 0) and
(0, 0, 1) oriented counterclockwise.

We apply Stoke’s Theorem directly - we have

curl((x + y2)~i + (y + z2)~j + (z + x2)~k)

=

(

∂R

∂y
−

∂Q

∂z

)

~i +

(

∂P

∂z
−

∂R

∂x

)

~j +

(

∂Q

∂x
−

∂P

∂y

)

~k

= (0 − 2z)~i + (0 − 2x)~j + (0 − 2y)~k = −2z~i − 2x~j − 2y~k

Therefore, by Stoke’s Theorem, we have
∫

B

((x+y2)~i+(y + z2)~j +(z +x2)~k) ·d~r =

∫ ∫

S

(−2z~i−2x~j −2y~k) ·d~S

with S oriented upward.
The surface S is a portion of a plane above a region in the xy-

plane. To find the equation for the plane, we use two vectors
in the plane (displacement vectors between the vertices) and
then one of the points and to find the region D, we project
into the xy-plane: we get z = g(x, y) = 1 − x − y and D with
0 6 y 6 1 − x and 0 6 x 6 1. Applying the flux integral
formula for graphs of functions, we have

∫ ∫

S

~F (x, y, z) · d~S

=

∫ ∫

D

(

−P (x, y, g(x, y))
∂g

∂x
−Q(x, y, g(x, y))

∂g

∂y
+R(x, y, g(x, y))

)

dA

=

∫ ∫

D

(−(−2(1−x−y))(−1)−(−2x)(−1)+−2y)dA =

∫

1

0

∫

1−x

0

−2dydx
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= −2

∫

1

0

(1 − x)dx = −2

[

x −
x2

2

]1

0

= −1.

We finish with some further examples illustrating some important con-
sequences of Stoke’s Theorem as well as some indirect applications.

Example 1.5. Suppose that S is a closed surface and ~F is a curl field.
Show that

∫ ∫

S

~F · d~S = 0.

Since ~F is a curl field, we must have ~F = curl( ~G) for some vector field
~G. This means we can apply Stoke’s Theorem indirectly. Specifically,
we have

∫ ∫

S

~F · d~S =

∫

B

~G · d~r

where B is the boundary of S. However, since S is closed, there is no
boundary, so it follows that

∫ ∫

S

~F · d~S =

∫

B

~G · d~r = 0.

Example 1.6. Use Stoke’s Theorem to evaluate
∫ ∫

S

curl(x2y3z~i + sin (xyz)~j + xyz~k) · d~S

where S is the part of the cone z = 3 −
√

(x2 + z2) below the plane
z = 3 oriented upwards illustrated below:
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This looks like a particularly complicated example, but we shall see how
in can be turned into a fairly easy problem using Stoke’s Theorem. Let
~F denote the vector field given above. First note that since ~F is a curl
field, we know that if L is any closed surface, then

∫ ∫

L

~F · d~S = 0.
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Let L be the surface which consists of the surface S described above,
and the cap of the cone, C oriented upward. Then

∫ ∫

L

~F · d~S = 0.

However,
∫ ∫

L

~F · d~S =

∫ ∫

S

~F · d~S +

∫ ∫

C

~F · d~S = 0,

and so
∫ ∫

S

~F · d~S = −

∫ ∫

C

~F · d~S =

∫ ∫

−C

~F · d~S

where −C denotes the cap of the cone with downward orientation. In
particular, we have changed a very complicated problem into a much
easier problem. Notice that the cap occurs in the xy-plane, and in this
plane, we have z = 0. In particular, in this plane, we have ~F = ~0 too
(by plugging z = 0 into the equation). It follows that

∫ ∫

S

~F · d~S =

∫ ∫

−C

~0 · d~S = 0.


