
Line Integrals and Entire Functions

“Defining an Integral for Complex Valued Functions”

In the following sections, our main goal is to show that every entire
function can be represented as an everywhere convergent power series
in z. In order to do this, we shall need to develop the concept of a line
integral. In vector calculus, we introduced the idea of a line integral.
The concept was motivated by the fact that the domain of a function
of two variables is the whole plane, so when we integrate functions of
two variables, we can integrate over any curve in the plane. Since the
domain of a complex function is also a plane (the complex plane), in
order to define the integral for a function of a complex variable, we
shall have to use a similar idea.

1. Definition and Properties of the Line Integral

1.1. The Definition of a Line Integral. Before we define a line
integral and consider how to calculate it, we need some preliminary
definitions and results. First we consider the more straight forward
case where the real and imaginary parts of a function of a complex
variables both depend on some fixed variable t.

Definition 1.1. Let f(t) = u(t) + iv(t) be any continuous complex-
valued function of the real variable t with a 6 t 6 b. Then we define

∫

b

a

f(t)dt =

∫

b

a

u(t)dt + i

∫

b

a

v(t)dt.

Calculation of integrals such as these are straight forward single vari-
able calculations. In order to define a general line integral, we need a
way to represent curves in the line. As with vector calculus, this can be
done through the use of parameterization. The following are important
definitions regarding parameterized curves.

Definition 1.2. (i) Let z(t) = x(t) + iy(t) a 6 t 6 b. The curve
determined by z(t) is called piecewise differentiable and we set

ż(t) = x′(t) + iy′(t)

if x and y are continuous on [a, b] and continuously differen-
tiable (C1) on each subinterval [a, x1], [x1, x2], . . . , [xn−1, b] of
some partition of [a, b].

(ii) The curve is said to be smooth if in addition ż(t) 6= 0 except
at a finite number of points.

For the rest of the course, unless otherwise stated, all curves will be
assumed to be smooth. We can now define a line integral.
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Definition 1.3. Let C be a curve parameterized by z(t), a 6 t 6 b
and suppose f is continuous at all points of z(t). Then the integral of
f along C is

∫

C

f(z)dz =

∫

b

a

f(z(t))ż(t)dt.

Note that this is now a single variable complex valued function of t so
can be calculated in the standard way.

1.2. Independence of Path Parameterization. The direction in
which we travel along C will change the value of the integral, but
it seems that how we travel along the curve C (once a direction is
specified) should not affect the values of the integral i.e. if z(t) and
w(t) are two different parameterizations of C, then the integral along C
should be the same regardless of the parameterization we use. Though
this can sometimes fail, under certain additional conditions imposed on
the parameterizations, we can guarantee that this will always be the
case.

Definition 1.4. The two curves C1 parameterized by z(t) with a 6

t 6 b and C2 parameterized by w(t) with c 6 t 6 d are said to be
smoothly equivalent if there exists a 1−1 C1 mapping λ : [c, d] → [a, b]
such that λ′(t) > 0 for all t and w(t) = z(λ(t)).

Proposition 1.5. If C1 and C2 are smoothly equivalent, then
∫

C1

f(z)dz =

∫

C2

f(z)dz.

Proof. Suppose that f(z) = u(z) + iv(z), C1 and C2 are parameterized
by z(t) = x(t) + iy(t) and w(t) respectively, and λ : [c, d] → [a, b] is a
1 − 1 C1 the mapping with w(t) = z(λ(t)) = x(λ(t)) + iy(λ(t)) and
λ′(t) > 0. Then we have

∫

C1

f(z)dz =

∫

b

a

f(z(t)) ˙z(t)dt

=

∫

b

a

u(z(t))x′(t)dt−
∫

b

a

v(z(t))y′(t)dt+i

∫

b

a

u(z(t))y′(t)dt+

∫

b

a

v(z(t))x′(t)dt

and
∫

C2

f(z)dz =

∫

d

c

f(w(t)) ˙w(t)dt =

∫

d

c

f(z(λ(t))) ˙z(λ(t))dt

=

∫

d

c

[u(z(λ(t))) + iv(z(λ(t)))][x′(λ(t)) + iy′(λ(t))]λ′(t)dt

=

∫

d

c

[u(z(λ(t)))x′(λ(t))λ′(t)]dt −
∫

d

c

[v(z(λ(t)))y′(λ(t))λ′(t)]dt
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+i

∫

d

c

[u(z(λ(t)))y′(λ(t))λ′(t)]dt +

∫

d

c

[v(z(λ(t)))y′(λ(t))λ′(t)]dt

Comparing each of the four integrals, we see it is a direct consequence
of the change of variable formulas for real integrals (i.e. substitution)
that these are equal. For example, if we take s = λ(t) in the integral

∫

d

c

[u(z(λ(t)))x′(λ(t))λ′(t)]dt

we have ds = λ′(t)dt and when t = c, s = a and when t = d, s = b, so
we get

∫

d

c

[u(z(λ(t)))x′(λ(t))λ′(t)]dt =

∫

b

a

u(z(s))x′(s)ds

�

This shows that a line integral is independent of parameterization.
However, as we stated before, it does depend upon direction. In order
to illustrate this fact, we need the following definition.

Definition 1.6. Suppose C is given by z(t) with a 6 t 6 b. Then −C
is defined by z(b + a − t) with a 6 t 6 b (so −C is C traced in the
opposite direction.

Proposition 1.7.
∫

−C

f(z)dz = −
∫

C

f(z)dz

Proof. We have
∫

−C

f(z)dz =

∫

b

a

f(z(b + a − z))ż′(b + a − t)dt

Similar to the last question, we can distribute to obtain four different
real integrals and then make the substitution s = b + a − z to each of
the real functions to prove the equality.

�

We consider some examples.

Example 1.8. (i) Calculate
∫

C

1

z
dz

where z(t) = cos (t) + i sin (t) with 0 6 t 6 2π.
First observe that

1

z
=

x

x2 + y2
− iy

x2 + y2
.
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Then we have
∫

C

1

z
dz =

∫ 2π

0

(cos (t)− i sin (t))(− sin (t)+ i cos (t))dt =

∫ 2π

0

idt = 2πi

(ii) Calculate
∫

C

1

z
dz

where C is the square of side length 1 oriented counterclock-
wise centered at the origin.

We need to calculate the integral over all four sides. Since
all calculations are similar, we calculate only over C1, the top
side parameterized by z(t) = −t+ i with −1 6 t 6 1. Here we
have

∫

C1

1

z
dz =

∫ 1

−1

(

− t

t2 + 1
+

i

t2 + 1

)

(1)dt

= − ln (t2 + 1)

2

∣

∣

∣

∣

1

−1

+ i arctan (t)

∣

∣

∣

∣

1

−1

=
πi

2
.

It can be shown that the integral over each side is also iπ/2,
so we get

∫

C

1

z
dz = 2πi

(observe that this is the same as the previous question - we
shall see why later).

1.3. Preliminary Results for Line Integrals. We now consider
generalizing some results for line integrals of real variables to line inte-
grals of complex variables. The first result shows that the operation of
integration is linear and can be proved by considering the correspond-
ing real integrals and using the real result.

Proposition 1.9. Let C be a smooth curve, let f and g be continuous
functions of z and let α be any complex number. Then

(i)
∫

C

[f(z) + g(z)]dz =

∫

C

f(z)dz +

∫

C

g(z)dz

(ii)
∫

αf(z)dz = α

∫

C

f(z)dz

The next result we consider generalizes the idea that the absolute value
of a definite integral of a function is bounded by the integral of the
absolute value of the same functions.
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Lemma 1.10. Suppose G(t) is a continuous and complex valued func-
tion of t. Then

∣

∣

∣

∣

∫

b

a

G(t)dt

∣

∣

∣

∣

6

∫

b

a

|G(t)|dt.

Proof. Suppose that
∫

b

a

G(t)dt = Reiϑ

for some fixed ϑ and R > 0. Then observe that
∣

∣

∣

∣

∫

b

a

G(t)dt

∣

∣

∣

∣

= R

so we just need to show that

R 6

∫

b

a

|G(t)|dt.

In order to do this, we consider the function e−iϑG(t). First, using the
linearity properties of the integral, we have

∫

e−iϑG(t)dt = R

so if

e−iϑG(t) = A(t) + iB(t)

(as real and imaginary parts), also using linearity of the integral, we
must have

R =

∫

b

a

A(t)dt.

But

A(t) = Re(e−iϑG(t)) 6 |Re(e−iϑG(t))| 6 |e−iϑG(t)| = |G(t)|
so we have

R =

∫

b

a

A(t)dt 6

∫

b

a

|G(t)|dt

so the result follows.
�

This result now allows us to impose an upper bound on any line integral
(similar to real variable where an upper bound is given by the length
of the curve multiplied by the maximum value of the function on the
curve).

Theorem 1.11. M − L Formula - Suppose that C is a smooth curve
of length L on G and that |f(z)| 6 M throughout C. Then

∣

∣

∣

∣

∫

C

f(z)dz

∣

∣

∣

∣

6 ML.
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Proof. We have
∣

∣

∣

∣

∫

C

f(z)dz

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

b

a

f(z(t))ż(t)dt

∣

∣

∣

∣

6

∫

b

a

|f(z(t))||ż(t)|dt 6

∫

b

a

M |ż(t)|dt

= M

∫

b

a

√

(x′(t))2 + (y′(t))2dt = ML

since
∫

b

a

√

(x′(t))2 + (y′(t))2dt = L

is the formula for the length of a curve parameterized by z(t) (recall
Vector Calculus and Calculus 2). �

Example 1.12. Show that
∣

∣

∣

∣

∫

C

1

z2
dz

∣

∣

∣

∣

6 2π

on the unit circle (oriented in either direction).
For this we simply observe that |1/z2| 6 1 on the unit circle, so

∣

∣

∣

∣

∫

C

1

z2
dz

∣

∣

∣

∣

6 2π.

We can use he ML-formula to show that the integral of a sequence of
uniformly integrals converge.

Proposition 1.13. Suppose that {fn} is a sequence of functions and
fn → f uniformly on a smooth curve C. Then

∫

C

f(z)dz = lim
n→∞

∫

C

fn(z)dz.

Proof. First by linearity of the integral, we have
∫

C

f(z)dz −
∫

C

f(z)dz =

∫

C

(f(z) − fn(z))dz.

Since fn → f uniformly, for n sufficiently large, we have |f − fn| < ε
for any ε > 0. Then we have

∣

∣

∣

∣

∫

C

(f(z) − fn(z))dz

∣

∣

∣

∣

6 εL

where L is the length of the curve. Since ε can be as small as we please,
it follows that

lim
n→∞

∫

C

fn(z)dz =

∫

C

f(z)dz.

�

The last preliminary result we prove is a generalization of the funda-
mental theorem of calculus for real variables.
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Proposition 1.14. Suppose that F ′ = f where F is an analytic func-
tion which is smooth on C. Then

∫

C

f(z)dz = F (z(b)) − F (z(a)).

Proof. We shall prove this by showing that the derivative of F (z(t))
with respect to t is f(z(t))ż(t) and then use the Fundamental Theorem
from real variable calculus to finish.
First note that since F is analytic, F (z(t)) will be a smooth curve. It
follows that

˙F (z(t)) = lim
h→0

h real

F (z(t + h)) − F (z(t))

h

i.e. since F (z(t)) is smooth, the derivative is defined so can be cal-
culated using the difference quotient taking h in any direction toward
0.
Next we note that since ż(t) 6= 0, (except for a finite number of points),
and is continuous, we can find δ such that |h| < δ implies z(t + h) −
z(t) 6= 0. Thus we have

˙F (z(t)) = lim
h→0

h real

F (z(t + h)) − F (z(t))

h

= lim
h→0

h real

F (z(t + h)) − F (z(t))

z(t + h) − z(t)
· z(t + h) − z(t)

h

= F ′(z(t)) · ż(t) = f(z(t))ż(t).

Then by definition and using the Fundamental Theorem of Calculus
for real variables, we have

∫

C

f(z)dz =

∫

b

a

f(z(t))ż(t)dt = F (z(b)) − F (z(a)),

hence the result.
�

2. The Closed Curve Theorem for Entire Functions

In this section we consider the generalization of the result in multivari-
able calculus which states that the line integral of a gradient vector
over a closed curve is 0. In order to prove this result, we shall have to
prove the result for certain special curves first.

2.1. The Rectangle Theorem. We shall first consider integrals over
rectangles. We need the following definitions.

Definition 2.1. A curve C is closed if its initial points and terminal
points coincide.
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Definition 2.2. By the boundary of a rectangle, we mean a simple
closed curve parameterized so that the rectangle it traces is on the left
ofs the curve is traced (see picture).

Theorem 2.3. Suppose f is an entire function and Γ is the boundary
of a rectangle R. Then

∫

Γ

f(z)dz = 0.

Proof. In order to prove this result, we first note that by the funda-
mental theorem of calculus, the result holds for linear functions i.e.
f(z) = az + b is everywhere the derivative of az2/2 + bz and the end-
points of the curve R are the same. Thus the result holds for linear
functions.
Now suppose that f(z) is an arbitrary entire function and let

I =

∫

Γ

f(z)dz.

We can break up the rectangle R into 4 equally sized rectangles with
boundaries Γ1, Γ2, Γ3 and Γ4 as illustrated below.

Observe that the sum of the integrals around each of these rectangles is
equal to the integral around R since the integrals over the sides inside
R cancel each other out. Thus we have

∫

Γ

f(z)dz =

4
∑

i=1

∫

Γi

f(z)dz.

It follows that for at least one of these integrals, which we shall denote
by Γ(1), we have

∣

∣

∣

∣

∫

Γ(1)

f(z)dz

∣

∣

∣

∣

>
I

4
.

Let R1 denote the rectangle with boundary Γ(1).
We can do exactly the same thing with the rectangle R(1) and continue
this process until we obtain a sequence of rectangles with

R(1) ⊃ R(2) ⊃ . . .
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with boundaries

Γ(1) ⊃ Γ(2) ⊃ . . . ,

with the following properties:

(i)

Side lengthsR(k+1) = ( Side lengthsR(k))/2

(ii)
∣

∣

∣

∣

∫

Γ(k)

f(z)dz

∣

∣

∣

∣

>
I

4k
.

Now observe that since f is entire, at any z0 ∈ R, there exists εz such
that

f(z) = f(z0) + f ′(z0)(z − z0) + ε(z − z0)

where εz → 0 as z → z0 i.e. it is differentiable, so can be approximated
using local linearization. Thus we have
∫

Γ(n)

f(z)dz =

∫

Γ(n)

f(z0)+f ′(z0)(z−z0)+ε(z−z0)dz =

∫

Γ(n)

εz(z−z0)dz

since the rest is linear. Thus we just need to bound this integral.
Let s denote the length of the largest side of Γ. Then we have

length of Γ(n) 6
4s

2n

(since s has the largest length) and

|z − z0| 6

√
2s

2n

for all z ∈ Γ(n) (the length from one corner of the square of side length
s/2n to the diagonal opposite - the two furthest points) .
Next note that since εz → 0 as z → z0, for any ε, we can find N such
that

|z − z0| 6

√
2s

2N

implies εz < ε. Then using the ML formula, for n > N , we have
∣

∣

∣

∣

∫

Γ(n)

f(z)dz

∣

∣

∣

∣

6 ε
4s

2n
·
√

2s

2n
=

4
√

2s2

4n
ε.

It follows that
|I|
4n

6
4
√

2s2

4n
ε

or equivalently

|I| 6 4
√

2s2ε.

This is now independent of z and holds for all epsilon, so it follows that
I = 0.

�
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2.2. The Integral Theorem. Our next task is to show that any entire
function f(z) is the derivative of some analytic function F (z) which we
will then be able to use to prove that the integral of an entire function
around any closed curve is 0.

Theorem 2.4. (The Integral Theorem) If f(z) is entire, then f is
everywhere the derivative of some analytic function i.e. there exists
F (z) such that f(z) = F ′(z) for all z.

Proof. We define F (z) =
∫

z

0
f(ζ)dζ where

∫

z

0
denotes the integral along

the straight lines from 0 to Re(z) and from Re(z) to Im(z) (see illus-
tration below).

�
�
�
� z

Next note that

F (z + h) − F (z) =

∫

h

0

f(ζ)dζ.

We can see this by looking at the lines over which the integrals are
being calculated. Specifically,

F (z + h) − F (z) −
∫

h

0

f(ζ)dζ

is the integral of the function f(ζ) from (0, 0) to Re(z), followed by
the rectangle with corners Re(h), Re(z + h), z + h and h + Im(z) in a
counterclockwise direction and finishing with the integral from Re(z)
to (0, 0) (see illustration).

z+h

�
�
�
�

h
�
�
�
�



11

The rectangle theorem tells us the integral over the rectangle will be
zero, and the other two integrals cancel (since they are along the same
line in opposite directions) so

F (z + h) − F (z) −
∫

h

0

f(ζ)dζ = 0.

Using this equality, we next observe that

F (z + h) − F (z)

h
− f(z) =

1

h

∫

h

0

[f(ζ) − f(z)]dζ

since the integral does not depend upon z, so
∫

h

0

f(z)dz = f(z)h.

Since we are trying to show that F ′(z) = f(z), we need to show that

F (z + h) − F (z)

h
− f(z) → 0

so our observations imply that it suffices to show that

1

h

∫

h

0

[f(ζ) − f(z)]dζ → 0.

Since f is continuous, for sufficiently small h we can guarantee that
|f(z) − f(ζ)| < ε for any ζ , so we get

∣

∣

∣

∣

F (z + h) − F (z)

h
− f(z)

∣

∣

∣

∣

=

∣

∣

∣

∣

1

h

∫

h

0

[f(ζ) − f(z)]dζ

∣

∣

∣

∣

6
1

|h|ε|h| = ε.

Letting ε → 0, we have
∣

∣

∣

∣

F (z + h) − F (z)

h
− f(z)

∣

∣

∣

∣

→ 0

so F ′(z) = f(z).
�

2.3. The Closed Curve Theorem. We are now ready to prove the
main result of this section - that the line integral of an entire function
around any closed curve is 0. With the results we already have, the
proof is now straight forward.

Theorem 2.5. If f is entire and C is a smooth closed curve, then
∫

C

f(z)dz = 0.

Proof. Since f is entire, we have f(z) = F ′(z) for some analytic func-
tion F (z). Then

∫

C

f(z)dz =

∫

C

F ′(z)dz = F (z(b)) − F (z(a)) = 0
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since F (z(b)) = F (z(a)).
�

In this Theorem we stated that f was entire, but this theorem can be
generalized to any region on which f is the derivative of some analytic
function F (z). Specifically, the more general closed curve theorem
would be the following:

Theorem 2.6. If f is entire on some region D (which is not necessarily
the whole complex plane) containing the smooth closed curve C, then

∫

C

f(z)dz = 0.

Note that this theorem fails if the function is not entire on a region
that contains C as we saw when we showed

∫

C

1

z
dz = 2πi

for the unit circle C centered at the origin.

Homework:
Questions from pages 54-55; 2,3,4,5,7,9


