
Properties of Entire Functions

“Generalizing Results to Entire Functions”

Our main goal is still to show that every entire function can be repre-
sented as an everywhere convergent power series in z. So far we have
developed the notion of a line integral and this will be one of the in-
tegral parts of this goal. In this chapter, we generalize some of the
results of entire functions to other related functions and then use it
to prove the main result. Following this, we shall consider a couple of
interesting consequences.

1. The Cauchy Integral Formula and Taylor Expansion

for Entire Functions

1.1. The Rectangle Theorem Revisited. Before we prove that ev-
ery entire function can be represented by a power series, we need a few
preliminary results. The first result is a proof of the rectangle theorem
for a function closely related to some given entire function f(z).

Theorem 1.1. If f is entire and

g(z) =

{

f(z)−f(a)
z−a

z 6= a

f ′(a) z = a

then
∫

Γ

g(z)dz = 0

where Γ is the boundary of any rectangle R.

Proof. The proof breaks into three cases depending upon whether a is
outside the rectangle, inside the rectangle or on the rectangle.

I. a lies on the outside of the rectangle.
In this case the function g(z) is analytic inside and on R, so the proof
is identical to that given in the original rectangle theorem (where all
we needed was that it was analytic inside and on the rectangle).

II. a lies on the rectangle.
In this case we subdivide the rectangle up into smaller rectangles with
sides Γi with 1 6 i 6 6 as follows.
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Due to cancellation along most of the interior sides, we see that
∫

Γ

g(z)dz =

6
∑

i=1

∫

Γi

g(z)dz.

Let R1 be the rectangle with a in one of its sides and Γ1 its sides. As
with the last case, we can use the rectangle theorem to show

∫

Γi

g(z)dz = 0

for 2 6 i 6 6, so it follows that
∫

Γ

g(z) =

∫

Γ1

g(z)dz.

Thus we just need to calculate this integral. Now since g(z) is con-
tinuous and R is closed and bounded, it must take a maximum value
somewhere in R i.e. |g(z)| 6 M for all z ∈ R some fixed M . If
we choose the rectangle R to have total sidelengths ε, using the ML
formula, we have

|

∫

Γ1

g(z)|dz 6 Mε.

Since this works for any ε, it follows that

|

∫

Γ

g(z)|dz = 0.

III. a lies on the interior of the rectangle.
In this case we break up the rectangle into nine individual rectangles
as illustrated and use an argument similar to above.

a
�
�
�
�

In particular, the integrals over each of the rectangles which do not
contain a will be zero, the value of g(z) will always be bounded, so
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by choosing the rectangle containing a to be sufficiently small, we can
make that integral as small as we like, so it follows that the integral
over Γ is 0.

�

An immediate consequence of the rectangle theorem is the following.

Corollary 1.2. If f is entire and

g(z) =

{

f(z)−f(a)
z−a

z 6= a

f ′(a) z = a

then the integral theorem (g(z) is the derivative of some entire function)
and the closed curve theorem (the integral around any closed curve is
00 apply to g(z).

Proof. Both of these results were consequences of the rectangle theo-
rem, so the proofs are identical for g(z). �

1.2. The Cauchy Integral Formula and Consequences. Now we
have shown that the rectangle theorem and other results hold for

g(z) =

{

f(z)−f(a)
z−a

z 6= a

f ′(a) z = a

we are ready to prove one of the most important results in complex
analysis which provides a way to integrate functions which are not
entire.

Theorem 1.3. (The Cauchy Integral Formula) Suppose that f is en-
tire, a is some complex number and C is the curve C : Reiϑ, 0 6 ϑ 6 2π
with R > |a| (so a is in the interior of C). Then

f(a) =
1

2πi

∫

C

f(z)

(z − a)
dz.

Proof. Since C is closed, by the previous result, we know
∫

C

f(z) − f(a)

z − a
dz = 0

so it follows that

f(a)

∫

C

1

z − a
dz =

∫

C

f(z)

z − a
dz.

Thus it suffices to show that
∫

C

1

z − a
dz = 2πi

which we do in the following Lemma.
�
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Lemma 1.4. Suppose a is contained the circle C̺ with center α and
radius ̺. Then

∫

C̺

dz

z − a
= 2πi.

Proof. First note that C̺ is parameterized by z(t) = ̺eit + a for 0 6

t 6 2π. It follows that
∫

C̺

dz

z − α
=

∫ 2π

0

i̺eit

̺eit
dt = 2πi.

Also observe that for k > 1, we have
∫

C̺

dz

(z − α)k+1
=

∫ 2π

0

i̺eit

̺ke(k+1)it
dt =

i

̺k

∫ 2π

0

e−itkdt = −
i

̺k

e−itk

ik

∣

∣

∣

∣

2π

0

= 0.

To evaluate
∫

C̺

dz

z − a

we write

1

z − a
=

1

(z − α) − (a − α)
=

1

(z − α)[1 − (a − α)/(z − α)]

=
1

z − α
·

1

1 − (a − α)/(z − α)

Since |(a − α)/(z − α)| = |(a − α)|/|̺| < 1 on the circle C̺,

1

1 − (a − α)/(z − α)

can be expressed as a geometric series which converges uniformly to

1

1 − (a − α)/(z − α)
.

Specifically, on C̺, we have

1

1 − (a − α)/(z − α)
= 1 +

a − α

z − α
+

(

a − α

z − α

)2

+ . . . .

Thus we have
∫

C̺

dz

z − a
=

∫

C̺

1

z − α

[ ∞
∑

k=0

(

a − α

z − α

)k]

dz =

∞
∑

k=0

(a−α)k

∫

C̺

dz

(z − α)k+1

=

∫

C̺

dz

z − α
= 2πi

thus completing the proof. �
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1.3. The Power Series Representation of an Entire Function.

Now we have Cauchy’s Theorem, we are now able to prove the major
first result we shall see in complex analysis - the fact that any entire
complex function can be represented as a power series.

Theorem 1.5. (Taylor Expansion of an Entire Function) Suppose that
f(z) is an entire function. Then it has a power series representation,
and in fact fk(0) exists for every k and

f(z) =

∞
∑

k=0

fk(0)

k!
zk.

Proof. In Chapter 2, we showed that if a power series
∑

akz
k

has a nonzero radius of convergence, then the coefficients of the power
series are determined by its value at 0 i.e. if f(z) =

∑

akz
k has a

nonzero radius of convergence, then ak = fk(0)/k!. Therefore, if we
can show show that f(z) can be represented as some power series at
every point of the complex plane, the result will follow.
Suppose a 6= 0, R = |a| + 1 and let C be the circle centered at the
origin with radius R. Then for any z in the circle C, the Cauchy
integral formula implies

f(z) =
1

2πi

∫

C

f(ω)

z − ω
dω.

Observe that
1

z − ω
=

1

ω(1 − z
ω
)

and since z lies within the circle, we have |z/w| < 1. In particular, we
can represent

1

ω(1 − z
ω
)

as a uniformly convergent power series in C i.e

1

ω(1 − z
ω
)

=
1

ω
+

z

ω2
+

z2

ω3
+ . . .

so we get

f(z) =
1

2πi

∫

C

f(ω)

z − ω
dω =

1

2πi

∫

C

∞
∑

k=0

f(ω)zk

ωk+1
dω

=

∞
∑

k=0

zk

(

1

2πi

∫

C

f(ω)

wk+1
dω

)

=

∞
∑

k=0

akz
k

where

ak =
1

2πi

∫

C

f(ω)

wk+1
dω.
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Thus for any z in C, f(z) can be represented as a power series. This
result holds for any circle centered at the origin and hence for any z in
the complex plane, f(z) can be represented as a convergent series.

�

The following results are consequences of this important Theorem.

Corollary 1.6. An entire function is infinitely differentiable.

Proof. This follows from our results on power series and the fact that
f(z) can be represented as a power series on the whole complex plane.

�

Corollary 1.7. If f is entire ad a is any complex number, then

f(z) = f(a) + f ′(a)(z − a) +
f ′′(a)

2!
(z − a)2 + . . .

for all z.

Proof. We just make the shift z → z− a and apply the results we have
already developed. �

Proposition 1.8. If f is entire and g is defined by

g(z) =

{

f(z)−f(a)
z−a

z 6= a

f ′(a) z = a

then g(z) is entire.

Proof. By the previous result, since f is entire, for 6= a, we have

g(z) =
f(z) − f(a)

z − a
= f ′(a) +

f ′′(a)

2!
(x − a) +

f 3(a)

3!
(x − a)2 + . . . .

By the definition of g(z), the value f ′(a) agrees with this power series
at z = a. Thus g(z) is representable as an everywhere convergent
power series and hence the results of Chapter 2 imply g is differentiable
everywhere and so entire. �

Corollary 1.9. If f is entire with zeros at a1, . . . aN . Then if g is
defined by

g(z) =
f(z)

(z − a1)(z − a2) . . . (z − aN)

for z 6= ak then limz→ak
g(z) exists for k = 1, . . . N and if g is defined

by these limits, then g is entire.

Proof. Let f0(z) = f(z) and define

fk(z) =
fk−1(z) − fk−1(ak)

z − ak

=
fk−1(z)

z − ak
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for z 6= ak. Assuming fk−1(z) is entire, it follows from the previous
result that the function

h(z) =

{

fk−1(z)−fk−1(ak)

z−ak
z 6= ak

f ′

k−1(a) z = ak

is an entire function, so in particular, the limit of fk(z) must exist at
z = ak. Thus if we define fk(ak) = f ′

k−1(ak), then fk(z) will be entire.
Since f(z) is entire, the result follows by induction since g(z) = fN (z).

�

2. Applications - Liouville’s Theorems and the

Fundamental Theorem of Algebra

We finish by considering some applications of the results we have proved
for entire functions.

Theorem 2.1. (Liouville’s Theorem) A bounded entire function is con-
stant.

Proof. For any a, b ∈ C we have

|f(b) − f(a)| =

∣

∣

∣

∣

1

2πi

∫

C

f(z)

z − a
dz −

1

2πi

∫

C

f(z)

z − b
dz

∣

∣

∣

∣

=

∣

∣

∣

∣

1

2πi

∫

C

f(z)(b − a)

(z − a)(z − b)

∣

∣

∣

∣

where C is a circle centered at the origin whose interior contains a
and b. Since we are assuming that f(z) is bounded, it follows that
|f(z)| 6 M for all z. Also note that if R is the radius of C, then

∣

∣

∣

∣

1

(z − a)(z − b)

∣

∣

∣

∣

6
1

(R − |a|)(R − |b|)

for any z on C since R − |a| = |z| − |a| 6 |z − a| (and similarly with
b). Then since the length of C is 2πR, using ther ML-formula, we get
∣

∣

∣

∣

1

2πi

∫

C

f(z)(b − a)

(z − a)(z − b)
dz

∣

∣

∣

∣

6
1

2π

2πM |b − a|

(R − |a|)(R − |b|)
=

M |b − a|

(R − |a|)(R − |b|)
.

Since R can be taken as large as we like, and R, a and b are all fixed,
taking R → ∞ we see

∣

∣

∣

∣

1

2πi

∫

C

f(z)(b − a)

(z − a)(z − b)
dz

∣

∣

∣

∣

6
M |b − a|

(R − |a|)(R − |b|)
→ 0,

hence the result.
�

Theorem 2.2. (The Extended Liouville Theorem) If f(z) is entire and
if for some integer k there exists positive constants A and B such that

|f(z)| 6 A + B|z|k
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then f is a polynomial of degree at most k.

Proof. We prove this result by induction. First note that k = 0 is
the original Liouville Theorem. Now suppose the result holds for a
given k and assume that f(z) is an entire function such that |f(z)| 6

A + B|z|k+1 for some positive constants A and B. Define g(z) as

g(z) =

{

f(z)−f(0)
z

z 6= 0

f ′(0) z = 0
.

Observe that since
|f(z)| 6 A + B|z|k+1,

it follows that
|g(z)| 6 C + D|z|k

for some C and D (by the way that g(z) is defined). Since g is entire,
the induction hypothesis implies that g(z) if a polynomial of degree at
most k, and thus it follows that f(z) is also a polynomial which has
degree at most k + 1.

�

One useful application of Liouville’s Theorem is a proof of the fun-
damental theorem of algebra - that is a proof of the fact that every
non constant polynomial with complex coefficients has a zero in the
complex numbers.

Theorem 2.3. (The Fundamental Theorem of Algebra) Every non con-
tsant polynomial with complex coefficients has a zero in C.

Proof. Let P (z) be a polynomial and suppose P (z) 6= 0 for any z ∈ C.
It follows that f(z) = 1/P (z) is an entire function. Moreover, if P is
non-constant then P → ∞ as z → ∞, so f(z) is bounded. Applying
Liouville’s Theorem, it follows that f(z) is constant, hence so is P (z)
contrary to our assumption.

�

The fundamental theorem of algebra guarantees the existence of non
constant polynomials, and through the use of induction, it can be shown
that a degree n polynomial must in fact have n zeros, though some of
them may occur more than once. With this in mind, we define the
following.

Definition 2.4. For a polynomial p(z), α ∈ C is called a zero of
multiplicity k if P (z) = (z − α)kQ(z), but α is not a zero of Q(z).

Homework:
Questions from pages 54-66; 2,3,4,5,8,10,12,14


