
Properties of Analytic Functions

“Generalizing Results to Analytic Functions”

In the last few sections, we completely described entire functions through
the use of everywhere convergent power series. Our goal for the follow-
ing sections is to instead consider functions which are analytic almost
everywhere and see which results generalize. We shall see that we do
get some generalizations (like representations of functions via conver-
gent power series), but unlike the entire case, we need to impose domain
restrictions on the corresponding power series.

1. The Power Representation of a Function which is

Analytic in a disc.

Our first task is to show that if a function is analytic in a disc, then it
can be represented by a power series which is convergent in that disc.
The results and proofs we use shall be similar to many we have already
developed so we shall skip many of the steps.

Theorem 1.1. (Another Rectangle Theorem) Suppose that f is ana-
lytic in a disc D(α, r). If the closed rectangle R and the point a are
both contained in D and Γ represents the boundary of R, then

∫

Γ

f(z)dz =

∫

Γ

f(z) − f(a)

z − a
dz.

Proof. This is identical to the proof for entire functions since we only
used the fact that it was analytic inside and on the rectangle bounded
by Γ.

�

For ease of notation, for a fixed f(z) which is analytic in a circle D
containing the point z = a, we denote by g(z) the function defined by

g(z) =

{

f(z)−f(a)
z−a

z ∈ D, z 6= a

f ′(a) z = a

Our next task is to show that f(z) and g(z) are the derivatives of
functions defined in the disc (which will be a generalization of the
same result for entire functions proved using the rectangle theorem).

Theorem 1.2. If f is analytic in the disc D(α, r) and a ∈ D(α, r),
there exists functions F and G such that

F ′(z) = f(z)
1
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and

G′(z) = g(z).

Proof. We define

F (z) =

∫ z

α

f(ζ)dζ

and

G(z) =

∫ z

α

g(ζdζ

where the path of integration goes along horizontal and vertical line
segments in D. Next observe that for any z ∈ D and h small enough,
we can guarantee that z+h ∈ D, so we can apply the rectangle theorem
as we did for the entire case to the difference quotients to obtain the
result.

�

Theorem 1.3. For f , g and a as before, if C is any closed curve in
D, then

∫

C

f(z)dz =

∫

C

g(z)dz = 0.

Proof. By the last result, we know there exists F with F ′ = f in D, so
if C is parameterized by z(t) with a 6 t 6 b, we have

∫

C

f(z)dz =

∫ b

a

f(z(t)) ˙z(t)dt = F (z(b)) − F (z(a)) = 0

since the initial and endpoints are the same. An identical result holds
for g(z).

�

Theorem 1.4. (The Cauchy Integral Formula) Suppose f is analytic
in D(α, r), 0 < ̺ < r and |a − α| < ̺ (so there is a circle which we
denote by C̺ of radius ̺ centered on α which contains the point a and is
fully contained in D (so C is parameterized by α+̺eiϑ for 0 6 ϑ < 2π
- see illustration). Then

f(a) =
1

2πi

∫

C̺

f(z)

z − a
dz.
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Proof. Since
∫

C̺

f(z) − f(a)

z − a
dz = 0

we have

f(a)

∫

C̺

dz

z − a
=

∫

C̺

f(z)

z − a
dz.

However, we saw earlier that
∫

C̺

dz

z − a
= 2πi

so we are done.
�

With all these results from entire functions generalized to functions
which are analytic in a disc, we are now ready to prove the main result
for analytic functions in a disc - the fact that they can be represented
by a power series which is convergent in that disc.

Theorem 1.5. If f is analytic in a disc D(α, r), then there exists
constants Ck such that

f(z) =
∞

∑

k=1

Ck(z − α)k

for all z ∈ D.

Proof. We follow a similar proof to the one given for an entire function.
Suppose a ∈ D and choose ̺ such that |a−α| < ̺ < r. By the previous
result, for any z with |z − α| < |a − α| we have

f(z) =
1

2πi

∫

C̺

f(w)

w − z
dw.

Next using the fact that

1

w − z
=

1

w − α
+

z − α

(w − α)2
+

(z − α)2

(w − α)3
+ . . .

and the series converges uniformly throughout C̺, we have

f(z) =
1

2πi

∫

C̺

f(w)

(

1

w − α
+

z − α

(w − α)2
+

(z − α)2

(w − α)3
+ . . .

)

dw

=
∞

∑

k=1

(z − α)k 1

2πi

∫

C̺

f(w)

(w − α)k+1
dw

i.e. f(z) can be represented as the power series
∞

∑

k=0

Ck(z − α)k
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where

Ck =
1

2πi

∫

C̺

f(w)

(w − α)k+1
dw.

As before, we note that these bounds appear to depend upon ̺, but
using the uniqueness theorem for power series in their domain of con-
vergence, we see that this in not the case. Thus for all z ∈ D,

f(z) =

∞
∑

k=0

Ck(z − α)k

where

Ck =
f (k)(α)

k!
=

1

2πi

∫

C̺

f(w)

(w − α)k+1
dw.

�

It should be pointed out that the results we have proved do not gener-
alize to arbitrary open sets even though it seems like it should - there is
something very special about convergence of power series and discs of
convergence. The following result however can be derived in a similar
way to the results we have just proved.

Theorem 1.6. If f is analytic in an arbitrary open domain D, then
for each α ∈ D, there exists constants Ck such that

f(z) =
∞

∑

k=0

Ck(z − α)k

for all points z inside the largest disc centered at α and contained in
D.

Example 1.7. (i) Determine the power series representation for

f(z) =
1

(z − 1)

for |z| < 1.
Observe that around z = 0, we have

1

z − 1
= − 1

1 − z
= −(1 + z + z2 + z3 + . . . )

provided |z| < 1 (this is just a geometric series). Therefore,
by the uniqueness of power series, we get

f(z) = −
∞

∑

k=0

zk.

(ii) Determine the power series representation for

f(z) =
1

(z − 1)

within the largest circle centered at z = i.
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First note that a convergent power series for f(z) centered
at z = i will exist provided |z − i| < |1 − i| =

√
2. Next we

observe that
1

z − 1
=

−1

(1 − i) − (z − i)
= − 1

(1 − i)
· 1

1 − z−i
1−i

=
1

i − 1

∞
∑

k=0

(

z − i

1 − i

)k

which converges as a geometric series provided
∣

∣

∣

∣

z − i

1 − i

∣

∣

∣

∣

< 1

or |z − i| <
√

2.

2. Uniqueness of Power Series

We now consider further generalizations of the results we proved for
entire functions to functions which are analytic in a disc.

Proposition 2.1. If f is analytic at a, then

g(z) =

{

f(z)−f(α)
z−α

z 6= α

f ′(α) z = α

is also analytic at α.

Proof. First observe that since f is analytic at z = α, then it has a
power series representation in some disc containing α i.e.

f(z) = f(α) + f ′(α)(z − α) +
f ′′(α)

2!
(z − α)2 + . . .

But then in that same neighbourhood, we have

g(z) = f ′(α) +
f ′′(α)

2!
(z − α) +

f (3)(α)

3!
(z − α)2 + . . .

Hence since g(z) is equal to convergent power series in that same disc,
it must be analytic at α.

�

Proposition 2.2. If f(z) is analytic at α then it is infinitely differen-
tiable at α.

Proof. By definition, a function is analytic at α if it is analytic in a
region containing α. But then it follows that f can be represented by a
power series in a disc containing α. However, this completes the proof
since power series are infinitely differentiable.

�

Next we generalize the uniqueness theorem for power series.
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Theorem 2.3. (The Uniqueness Theorem for Power Series) Suppose
that f is analytic in a region D and that f(zn) = 0 where {zn} is a
sequence of distinct points and zn → z0 ∈ D. Then f(z) = 0 for all
z ∈ D.

Proof. Let C be any disc contained in D and centered at z = α. Then
a power series for f(z) exists at z = α and by the uniqueness of power
series it follows that f = 0 throughout C. Therefore, we just need to
consider the points of D which cannot be covered by a disc which is
fully contained in C and is centered at α. The proof we use is similar
to an earlier idea.
Define

A = {z ∈ D|z is a limit of zeros of of f}
and

B = {z ∈ D|z /∈ A}
Clearly A ∩ B = 6o. We shall show that both A and B are open and it
will follow that A = D since D is a region and we know A 6= 6o.
The set A is open by the uniqueness theorem for power series. Specif-
ically, if a ∈ A, then there is an open disc containing a in which f(z)
has a power series representation which will be 0 (since a is a limit of
zeros), so every point in that disc will also be a limit of zeros.
Now suppose that b ∈ B. Since b is not a limit point of zeros, there
must exist some δ such that |z − b| < δ implies z is not a zero of f(z).
Clearly every point in this disc is also an element of B and hence B is
open. The result follows.

�

The following result is immediate.

Corollary 2.4. If two functions f and g are analytic in a region D and
agree on a set with an accumulation point in D then f = g throughout
D.

Proof. This is easily proved by considering the function f − g. �

The results we have proved can be used to determine conditions for
when an entire function is a polynomial.

Theorem 2.5. If f is entire and f(z) → ∞ as z → ∞, then f is a
polynomial.

Proof. First we observe that f(z) has a finite number of zeros. To
see this, observe that since f → ∞, there is some M > 0 such that
|f(z)| > 1 for |z| > M . It follows that the only zeros of f occur in the
disc D(0, M). Since this set is bounded, if there are an infinite number
of zeros, there will be an accumulation point of zeros and hence by the
uniqueness f(z) = 0 everywhere (since it is entire).
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Next let α1, . . . , αN denote the zeros of f(z) and define

g(z) =
f(z)

(z − α1) . . . (z − αN)

Since f(z) is entire, this function is also entire (as proved in the last
chapter) and it is never 0 since we divided out by the zeros and hence

h(z) =
1

g(z)
=

(z − α1) . . . (z − αN )

f(z)

is also entire. Since f(z) → ∞ as z → ∞ it follows that |h(z)| → 0
as z → ∞. In particular, |h(z)| 6 A for some fixed constant A, so by
Liouvilles theorem, h(z) = k for k a constant. It follows that

f(z) = k(z − α1) . . . (z − αN),

so we are done.
�

3. The Mean Value Theorem and the Maximum Modulus

Principle

We finish by considering more generalizations from results of real anal-
ysis. We start with an extension of the mean value theorem.

Theorem 3.1. If f is analytic in D and α ∈ D, then

f(α) =
1

2π

∫ 2π

0

f(α + reiϑ)dϑ

for any disc D(α, r) contained in D.

Proof. This is simply a reformulation of the Cauchy integral formula
taking the parameterization around the disc D(α, r) as z = α + reiϑ.

�

Definition 3.2. We call α a relative maximum of f(z) is |f(α)| > f(z)
for all z in some disc centered at α. Likewise, we define a relative
minumum of f(z).

The following result shows that an analytic function cannot attain rel-
ative minimums and maximums.

Theorem 3.3. (The Maximum Modulus Principle) A non-constant
analytic function in a region D does not have any interior maximum
points.

Proof. We need to show that for a fixed z ∈ D, given any δ > 0 we can
find some w ∈ D(z, δ) such that |f(w)| > |f(z)|. Suppose that C ⊂ D
is a circle of radius r centered at z parameterized by z(ϑ) = z+reiϑ and
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let M be the maximum value of f(z) on C. The mean value theorem
implies

f(z) =
1

2π

∫ 2π

0

f(z + reiϑ)dϑ

so it follows that

|f(z)| 6

∣

∣

∣

∣

∫ 2π

0

f(z + reiϑ)dϑ

∣

∣

∣

∣

6 M

by the ML-formula. It follows that on any circle C centered at z, there
exists z0 ∈ C such that |f(z)| 6 M = f(z0). To show that f(z) cannot
be a maximum value, we need to show that equality cannot hold - that
is, for each circle C containing z, there cannot exists a point z0 on C
with |f(z)| = M = f(z0).
Suppose this is the case. Then on any circle C we have

M = |f(z)| =

∣

∣

∣

∣

∫ 2π

0

f(z + reiϑ)dϑ

∣

∣

∣

∣

6
1

2π

∫ 2π

0

|f(z + reiϑ)|dϑ = M

so it follows that |f(z + reiϑ)| = M for all ϑ i.e. |f | is constant on the
circle C. Since this is true for all circles containing z within D, and so it
follows that f is constant (since it is analytic) which is contrary to our
assumptions. Thus there must exist w ∈ D such that |f(z)| < |f(w)|
i.e. f attains no maximum value in D.

�

The maximum modulus principle can be restated as follows.

Corollary 3.4. If f(z) is analytic on a region D and defined on the
boundary ∂D, then the maximum value of f(z) on the closed region D̄
is attained on ∂D.

In an identical way, we can determine a minimum modulus principle.

Theorem 3.5. If f is a non-constant analytic function in a region D
then no point z ∈ D can be a relative minimum of f unless f(z) = 0.

Proof. Suppose that f(z) 6= 0. Then we can apply the maximum mod-
ulus principle to the function g = 1/f to get the result. �

Homework:
Questions from pages 78-79; 1,3,5,6,8,9,11


