
Simply Connected Domains

“Generalizing the Closed Curve Theorem”

We have shown that if f(z) is analytic inside and on a closed curve C,
then

∫

C

f(z)dz = 0.

We have also seen examples where f(z) is analytic on the curve C, but
not inside the curve C and

∫

C

f(z)dz 6= 0

(for example f(z) = 1/z over the unit circle centered at 1. In this
section, we want to consider exactly which types of regions the closed
curve theorem holds and over which types of regions it does not hold.

1. The General Cauchy Closed Curve Theorem

In order to describe the most general region in which the Cauchy in-
tegral formula holds, we need to introduce some new topological defi-
nitions. The first new idea we introduce is that of a simply connected
region. To help understand this new concept, we shall introduce two
equivalent definitions (one which considers the properties of a region
and one which considers properties of the complement).

Warning. For a region to be simply connected, in the very least it
must be a region i.e. an open, connected set.

Definition 1.1. A region D is said to be simply connected if any simple
closed curve which lies entirely in D can be pulled to a single point in
D (a curve is called simple if it has no self intersections).

Definition 1.2. A region D is simply connected if for any z ∈ Dc

(the complenent of D) and ε > 0, there is a continuous curve γ(t) with
0 6 t < ∞ such that

(i) d(γ(t), Dc) < ε for all t > 0
(ii) γ(0) = z0

(iii) limt→∞ γ(t) = ∞
Note that by the second definition, a sufficient condition for a region D
to be simply connected is that given any point z0 in the complement,
there is a smooth curve connecting z0 to ∞ which lies entirely within
Dc. It should be noted however that this is only a sufficient condition
and not a necessary condition i.e. there exists simply connected regions
whose complements do not satisfy this.
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To illustrate this concept, we consider a number of different examples.
We shall use both the naive definition and the formal definition to prove
whether each given region is simply connected.

Example 1.3. Determine with reasons which of the following regions
are simply connected.

(i) The unit disc {(z ∈ C||z| 6 1} including the boundary.
This is not an open set, so is not a region and hence cannot

be a simply connected region.
(ii) The unit disc {(z ∈ C||z| < 1}.

z

The set is a region. Using the first definition, clearly it is
simply connected because if we place any loop in D, it can be
pulled to a point. Using the second definition, we can connect
any point z in Dc to ∞ by taking a radial line from z outward
i.e. γ(t) = z + zt.

(iii) The strip {z ∈ C| − 1 < Im(z) < 1}.

z

The set is a region. Using the first definition, clearly it is
simply connected because if we place any loop in D, it can be
pulled to a point. Using the second definition, we can connect
any point z in Dc to ∞ by taking a radial line from z outward
like last time i.e. γ(t) = z + zt.

(iv) The region D which consists of the disc of radius 2 minus the
disc of radius 1 i.e. the set {z ∈ C|1 < |z| < 2}.

This set is clearly not simply connected. For the first defi-
nition, take any loop which loops around the unit disc. This
loop cannot be pulled to a point and hence D is not simply
connected. For the second definition, observe that any point
in the interior of the disc is in Dc and clearly there is no path



3

from any point in the interior of the unit disc to ∞ which
remains in the region Dc.

z

(v) The interior of the unit disc minus the curve y =
√

x i.e.
{z ∈ C||z| < 1, y 6= √

x}.

z

The set is a region. Using the first definition, clearly it is
simply connected because if we place any loop in D, it can be
pulled to a point. Using the second definition, we can connect
any point z in Dc to ∞ by taking a radial line from z outward
like last time unless it lies on the curve y =

√
x. However, in

this case we can define our curve along the line y =
√

x and
then radially out from the point of intersection between the
disc and the line (which we call z0) i.e.

γ(t) =

{

z + t +
√

ti 0 6 t 6 a

z0 + z0t t > a

where a is the value such that z + a +
√

ai = z0.
(vi) The complex plane minus the origin i.e. {z ∈ C||z| > 0}.

This is not simply connected. Any loop which contains z = 0
cannot be pulled to a point using the first definition. For the
second definition, observe that Dc consists of just the point
z = 0, so there is no way to determine a path from z = 0 to
∞ which stays in Dc.

Our next task is to show that the integral theorem and all related
results hold for any function which is analytic in some simply connected
region for any curve in that region.In order to prove this result, we some
additional facts.
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Lemma 1.4. Suppose C is a closed curve contained in a simply con-
nected region D. Then the interior of C is contained in D (by the
interior, we mean the finite region with boundary C).

Proof. Suppose that C is some closed curve. Then C may intersect
itself a number of times. However, if this happens, then C may be
broken up into a number of simple closed curves (see illustration). Thus
it suffices to prove the result for simple closed curves.

Assume C is a simple closed curve and that there are points in the inte-
rior of C which are not included in the region D. Then it is impossible
to contract C to a point within D, so D cannot be simply connected
which is contrary to our assumption. This it follows that the interior
of C is included in D.
Alternatively, if there exists a point z0 in the interior of C which is not
in D, then since any path from z0 to ∞ will have to pass through C,
the second definition of simply connected would imply D is not simply
connected, so the result follows.

�

Lemma 1.5. Suppose that A is a compact and {Ui} is a set of open
sets with

A ⊂ ∪Ui.

Then there exists a finite subset {Uj} such that

A ⊂ ∪Ui.

Proof. Homework.
�

We are now ready to prove the main result. The actual proof is much
more technical than we shall consider,so we shall instead consider a
sketch proof of the result. The main idea stems back to the results we
have already developed.

Theorem 1.6. Suppose f(z) is analytic in a simply connected region
D and that C is a smooth closed curve contained in D. Then

∫

C

f(z)dz = 0.
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Proof. First note that by the remarks made in the last lemma, it suffices
to prove this result for simple closed curves, so assume that C is simple.
Let R denote the interior region of C. Suppose that z1 is a point on C.
Since D is a region, we can find an open ball B centered at z1 so that
B ⊂ D. It follows that f(z) is analytic in B and by the closed curve
theorem,

∫

Γ

f(z)dz = 0

for any closed curve contained in B. In particular, if we take Γ to be
the curve which which consists of the boundary of C contained in B
and the points on the boundary of B with z ∈ D (see illustration), we
get

∫

Γ

f(z)dz = 0.

Let {Bi} denote the set of all balls around each point on C which are
contained in D where Bi is centered around zi ∈ C. Since C is a com-
pact subset of C, there is a finite subset of open balls {Bj}n

j=1 which
covers C centered at the points zj ∈ C. Without loss of generality,
suppose that the points zj are ordered on the curve numerically. Start-
ing at z1, we construct a closed curve Γ1 as described above. Next, we
move to the next ball B2 and construct a closed curve Γ2 which consists
of the boundary of C contained in B2 which is not in B1 and the points
on the boundary of B2 with z ∈ D but are not contained in B1 (see
illustration). We continue this process until we reach the final ball Bn

where we construct a closed curve Γn which consists of the boundary
of C contained in Bn which is not in B1 or Bn−1 and the points on the
boundary of Bn with z ∈ D but are not contained in B1 or Bn−1.
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Now observe that the boundaries of the balls Bj in the interior of the
region R form a finite number of closed curves within the region R
(since there are only finitely many Γi). Since D is simply connected we
have R ⊂ D and so

∫

Π

f(z)dz = 0

for any closed curve Π in R. In particular, if {Πi}m
i=1 denotes the set

of closed curves which consist of the boundaries of the Bj in D, then
∫

Πi

f(z)dz = 0

for each i. Finally, by the way we have constructed the regions, after
cancellation along all the curves contained inside D, we get

∫

C

f(z)dz =

m
∑

i=1

∫

Πi

f(z)dz +

n
∑

j=1

∫

Πj

f(z)dz

and the result follows.
�

The following is am immediate consequence of the closed curve theo-
rem.

Theorem 1.7. If f is analytic in a simply connected region D, there
exists F (z) such that F ′(z) = f(z) for all z ∈ D.

Proof. Fix some z0 ∈ D and for any z ∈ D define

F (z) =

∫ z

z0

f(ζ)dζ.

Using the closed curve theorem, this is well defined. To show that
F ′ = f , we use the fact that

F (z + h) − F (z)

h
=

1

h

∫ z+h

z

f(ζ)dζ

where
∫ z+h

z
denotes the integral along the simplest polygonal path from

z to z + h and imitate the proof of the result for entire functions.
�

We illustrate with an example.

Example 1.8. Suppose that C is a circle of radius r centered at α and
a ∈ C but a /∈ C i.e. a does not lie in the boundary of C or in the
interior of C. Then

∫

C

1

z − a
dz = 0

since the circle C is contained in a simply connected subset of the
domain of analyticity of 1/(z − a).
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One very useful consequence of the general closed curve theorem is the
following.

Proposition 1.9. Suppose C1 and C2 are simple closed curves oriented
in the same direction and that C1 is contained in the interior of C2.
Then if f(z) is analytic on the region bounded between C1 and C2 and
on C1 and C2. Then

∫

C1

f(z)dz =

∫

C2

f(z)dz.

Proof. Let C1 and C2 be simple closed curves with C1 contained in the
interior of C2 and suppose that f(z) is analytic on C1 and C2 and in the
region bounded by the boundaries of C1 and C2 as illustrated below.

C2

C1

Next draw a line L (or curve) from C2 to C1 which does not inter-
sect itself. We consider it as two different curves oriented in opposite
directions - L1 from C2 to C1 and L2 from C1 to C2 (see illustration
below).

L2

C2

C1

L1

Let C = C2 ∪ L1 ∪ −C1 ∪ L2 and observe that since L1 and L2 are
oriented in the opposite directions, we have

∫

C

f(z)dz =

∫

C2∪−C1

f(z)dz.

Now observe that the curve C is contained in a simply connected region
D - specifically the region bounded between C1 and C2 and the line L.
To see this observe that if z is a point not in C2, then clearly it can be
connected to ∞ by a path fully contained in Dc. If z soes lie in Dc but
inside C2, then it either lies on the line L or in the interior of D, so
we can connect z to infinity via a line which passes over L. Thus the
region D (as illustrated below) is a simply connected region containing
C.
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L2

C2

C1

L1

By the general integral formula, since f(z) is analytic inside and on C,
it follows that

∫

C

f(z)dz =

∫

C2∪−C1

f(z)dz = 0

or
∫

C1

f(z)dz =

∫

C2

f(z)dz

as postulated.
�

2. The Analytic Function log (z)

We finish by trying to define a logarithm. In single variable calculus,
a logarithm function is easy to define since any exponential function is
one-to-one. In complex analysis, the exponential function is not one-
to-one, so we need to impose domain restrictions in order to define an
inverse function. We define a logarithm as follows.

Definition 2.1. We say that f(z) is an analytic branch of log (z) in a
domain D if

(i) f is analytic in D
(ii) f is am inverse of g(z) = ez i.e. ef(z) = z.

We first observe that since ez is periodic with period 2πi, if f is any any
analytic branch of log (z), then so is the function f(z) + 2πki for any
integer k. Next we observe the conditions our definition for a logarithm
impose on the function f(z).
Now suppose that f(z) = u(z)+iv(z). If z = Reiϑ, then since ef(z) = z,
using the exponential properties, we have

eu(z)+iv(z) = eu(z)eiv(z) = Reiϑ

so eu(z) = R and v(z) = Arg(z) = ϑ + 2kπ. Thus we can always find
a branch of log (z) be setting f(z) = log (|z| + iArg(z) where log (|z|)
is the real natural logarithim and Arg(z) is the argument taken with
0 6 Arg(z) < 2π.
The major problem with the way we have defined this branch is that
it is unclear whether it is analytic (or even how to go about showing it
is analytic). Therefore, as can be done with the real logarithm, we can
use integration to define a logarithm in complex variables.
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Theorem 2.2. Suppose that D is a simply connected domain and that
0 /∈ D. Choose z0 ∈ D, fix a value of log (z0) so that elog(z0) = z0 and
set

f(z) =

∫ z

z0

dζ

ζ
.

Then f is an analytic branch of log (z) in D.

Proof. First note that f is well defined since 1/ζ is analytic in D and
so the integral along any two paths are equal. Next, we observe that
f ′(z) = 1/z, so f is analytic in D (since it is differentiable). To show
it is an analytic branch of log (z), we need to show that ef(z) = z.
To see this, we observe that if g(z) = ze−f(z), then

g′(z) = e−f(z) − zf ′(z)e−f(z) = 0

and so g is constant. Next observe that

g(z) = g(z0) = z0e
−f(z0) = z0e

− log (z0) = z0
1

z0

= 1.

Thus it follows that ze−f(z) = 1 or

ef(z) = z.

�

In an identical way, for any analytic function f(z), we can define a
branch of log (f(z)) in an identical way. In particular, this provides
us with a way to define analytic branches of different functions which
in real analysis may have inverses, but in complex analyis do not. We
illustrate with an example.

Example 2.3. For any analytic branch of log (z), we can define a
branch of z1/2 as

z1/2 = e
1

2
log (z).

This really is a branch since

(e
1

2
log (z))2 = elog (z) = z

so it provides solutions to the equation w2 = z.
More specifically, if we chose z0 = 1 and log (0) = 1, an analytic branch
of log (z) is

f(z) =

∫ z

0

dζ

ζ
.

It follows that a corresponding analytic branch of z1/2 will be

g(z) = e
1

2
f(z).

Note that unlike the logarithm, there are only two branches of z1/2.
Specifically, given any branch f(z) of log (z), any other branch will be
of the form f(z) + 2nπi. However, since

e
1

2
f(z) = e

1

2
(f(z)+2πki]
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for any even integer k, there will only be two branches for z1/2 depend-
ing upon whether k is even or odd.

Homework:
1) Suppose that A is a compact and {Ui} is a set of open sets with

A ⊂ ∪Ui.

Show that there exists a finite subset {Uj} such that

A ⊂ ∪Ui.

Questions from pages 101-102; 1,3,7,8,9


