
Isolated Singularities and Laurent Series

“Functions which are not analytic at a point”.

In this chapter we consider function which are analytic in the entire
complex plane except at a finite number of points. We shall see that
many of the results we have already developed will allow us to draw
important conclusions about such functions. We shall also see how
these results can be applied to problems such as real integrals of real
functions and summation of real valued series.

1. Classification of Isolated Singularities

We start with some definitions and facts.

Definition 1.1. For a given z0 ∈ C, by a deleted neighbourhood of z0,
we mean an open set

{z : 0 < |z − z0| < d}

for some fixed d.

Definition 1.2. A function f(z) is said to have an isolated singularity
at z0 if f is analytic in a deleted neighbourhood of z0 but not at z0.

Though it is beyond the scope of this course, in order to completely
analyze isolated singularities, we shall need the following result.

Theorem 1.3. Suppose f is continuous in a open set D and analytic in
a deleted neighbourhood N of z0 ∈ D with N ⊂ D. Then f is analytic
at z0.

The following result is immediate.

Corollary 1.4. If f has an isolated singularity at z0, then it must be
discontinuous at z0.

Our first task will be to describe all the different types of isolated
singularity.First we note that singularities can be catagorized into the
following three catagories.

Definition 1.5. Suppose f has an isolated singularity at z0.

(i) If there exists a function g(z) which is analytic at z0 and such
that g(z) = f(z) in a deleted neighbourhood of z0, we say
f(z) has a removable singularity at z0 (it can be made into an
analytic function by simply changing the value at z0).

(ii) If for z 6= z0, f can be written in the form f(z) = A(z)/B(z)
where A and B are analytic at z0, A(z0) 6= 0 and B(z0) = 0,
we say f has a pole at z0. If B has a zero of multiplicity k at
z0 we say f has a pole of order k at z0.
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(iii) If f has neither a removable singularity or a pole at z0, we say
it has an essential singularity.

Example 1.6. (i) The function f(z) = sin (z)/z has a removable
singularity at z = 0. It is removable since f(z) agrees with

g(z) =

∞
∑

n=0

(−1)k z2k

(2k + 1)!

which is an everywhere convergent power series.
(ii) The function f(z) = 1/z2 has a pole of order 2 at z = 0.
(iii) The function f(z) = e1/z has an essential singularity at z = 0.

We now analyze these three different possibilities. We start by giving
criteria for determining what type a given singulaity is.

Theorem 1.7. (Riemann’s Principle) If f has an isolated singularity
at z0 and if limz→z0

(z − z0)f(z) = 0, then the singularity is removable.

Proof. Consider

h(z) =

{

(z − z0)f(z) z 6= z0

0 z = z0

By construction, h(z) is continuous, and since f(z) is analytic in a
deleted neighbourhood of z0, so is h(z). It follows that h(z) is also
analytic at z0. Let g(z) = h(z)/(z − z0). Clearly g(z) is analytic in a
deleted neighbourhood of z0. However, since h(z0) = 0, it follows that

g(z) =
h(z)

z − z0

is also analytic in the deleted neighbourhood and at z0 (as proved in
previous sections). But then f(z) = g(z) for all z 6= z0 in a deleted
neighbourhood of z0, so it follows that f(z) has a removable singularity
at z0).

�

Corollary 1.8. If z0 is an isolated singularity of f and f is bounded
in some neighbourhood of z0, then z0 is a removable singularity.

Theorem 1.9. If z0 is an isolated singularity of f(z) and there exists
an integer k such that

lim
z→z0

(z − z0)
kf(z) 6= 0

but

lim
z→z0

(z − z0)
k+1f(z) = 0,

then f has a pole of order k.
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Proof. We imitate the proof of the last result. Specifically, we set

g(z) =

{

(z − z0)
k+1f(z) z 6= z0

0 z = z0

Since g is continuous in the whole neoghbourhood, it will be analytic
in the whole neighbourhood. If we define A(z) = g(z)/(z − z0) =
(z − z0)

kf(z), then since g(z0) = 0 it follows that A(z) will also be
analytic in the whole neighbourhood of z0 and at the point z0. Observe
also that A(z0) = (z − z0)

k 6= 0 by assumption. Thus

f(z) =
A(z)

(z − z0)k

for z 6= z0 and A(z0) 6= 0, so f(z) has a poloe of order k at z0 by
definition.

�

Observe that in both of these cases, we have some form of control
over the singularity - specifically, f(z) differs from an analytic function
by a multiple of (z − z0). The last case we examine are the essential
singularities - points where such control is not possible.

Theorem 1.10. (Casorati-Weierstraß Theorem) If f(z) has an essen-
tial singularity at z = z0 and if N is a deleted neighbourhood of z0,
then the range R{f(z)| ∈ N} is dense in the complex plane.

Proof. Assume that R is not dense in C. Then there exists some disc
D = D(w, δ) such that f(z) takes no value in D i.e. |f(z)−w| > δ for
all z ∈ D. Now consider the function h(z) = 1/(f(z) − w). Since f(z)
is analyirc inside N (except at z0) and since f(z) 6= w, it follows that
h(z) will be analytic inside N except at z0 (which will be a singularity).
Also note that

|h(z)| =
1

|f(z) − w|
<

1

δ

for all z ∈ N , and in particular, it will be bounded. Hence z0 will be a
removable singularity of h(z), so there exists an analytic function g(z)
which is analytic at z0 and inside N with g(z) = h(z) for z 6= z0. But
then

f(z) =
wg(z) + 1

g(z)
,

so either has a removable singularity at z0 (if g(z0) 6= 0) or a pole (if
g(z0) = 0 by definition of a pole). Hence the result.
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2. Laurent Expansions

In the last few chapters, we developed the theory of Taylor serier for
analytic functions - infinite series which equal a given complex analytic
function in a given disc. In this section we generalize this idea to
isolated singularities - specifically, we shall determine a power series
representation for a function f(z) which has isolated singularities. We
start with a definition and basic facts about so called “two sided series”
or Laurent Series.

Definition 2.1. We say
∞

∑

k=−∞

µk = L

if both
∞

∑

k=0

µk

and
∞

∑

k=1

µ
−k

both converge and sum to L.

Theorem 2.2.

f(z) =

∞
∑

k=−∞

akz
k

is convergent in the domain D = {z : R1 < |z|and|z| > R2} where

R1 = lim
k→∞

|a
−k|

1/k

and

R2 =
1

limk→∞
|ak|1/k

If R1 < R2 then D is an annulus and f is analytic in D.

Proof. By the root test for regular power series,

f1(z) =
∞

∑

k=0

akz
k

converges for |z| < R2 and

g(w) =
∞

∑

k=1

a
−k

1

zk
=

∞
∑

k=1

a
−kw

k

where w = 1/z converges for |w| < 1/R1 or |z| > R1. Thus f(z)
converges on the intersection of these two regions. Also, since g(w) and
f(z) are both power series, they are both analytic on their domains of
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convergence, and hence f(z) will also be analytic on the intersection of
these domains.

�

We these preliminary results, we are now ready to prove that any func-
tion which is analytic in an annulus has a Laurent expansion in that
annulus (thus generalizing Taylors Theorem for functions analytic in a
disc).

Theorem 2.3. If f is analytic in the annulus A : R1 < |z| < R2, then
f has a unique Laurent expansion

f(z) =

∞
∑

k=−∞

akz
k

in A where

ak =
1

2πi

∫

C

f(z)

zk+1
dz

where C is any circle in A centered at z = 0.

Proof. The proof is similar to the case for Taylor series. Suppose z ∈ A
and choose r1 and r2 with R1 < r1 < |z| < r2 < R2 and let C1 and C2

denote the circles of radius r1 and r2 centered at 0 respectively. Now
by our previous results, since f is analytic in A, so is

g(w) =
f(w) − f(z)

w − z
.

It follows by the closed curve theorem (and our previous observations)
that

∫

C2−C1

g(w)dw = 0

or
∫

C2−C1

f(w)

w − z
dw =

∫

C2−C1

f(z)

w − z
dw.

Applying Cauchys Theorem, it follows that
∫

C1

f(z)/(w − z)dw = 2πi

and
∫

C2

f(z)/(w− z)dw = 0 (since z does not lie in C2). Thus we have

f(z) =
1

2πi

∫

C2

f(w)

w − z
dw −

∫

C1

f(w)

w − z
dw.

We analyze these two integrals individually.
On C2, since |w| > |z| (so |z/w| < 1), we have

1

w − z
=

1

w(1 − z/w)
=

1

w
+

z

w2
+

z2

w3
+ . . .

and on C1, since |w| < |z| we have

1

w − z
= −

1

z − w
= −

1

z
−

w

z2
−

w2

z3
− . . .
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It follows that

f(z) =
1

2πi

∫

C2

(

∞
∑

k=0

f(w)zk

wk+1

)

dw +
1

2πi

∫

C1

(

−∞
∑

k=−1

f(w)zk

wk+1

)

dw.

Next observe that if C is any circle in A centered at the origin then
∫

C

f(w)zk

wk+1
dw =

∫

C1

f(w)zk

wk+1
dw =

∫

C2

f(w)zk

wk+1
dw

(using a similar argument as the beginning of the proof applying the
closed curve theorem since for every k the function f(w)/wk+1 is ana-
lytic), so we have

f(z) =
1

2πi

∫

C2

(

∞
∑

k=0

f(w)zk

wk+1

)

dw+
1

2πi

∫

C1

(

−∞
∑

k=−1

f(w)zk

wk+1

)

dw =

∞
∑

k=−∞

akz
k

where

ak =
1

2πi

∫

C

f(w)

wk+1
dw

i.e. f(z) has a power series representation at every point in A.
To see uniqueness, observe that if

∞
∑

k=−∞

akz
k

is any other power series representation for f(z), then since f(z)/zk+1

is analytic in A, for each k and any circle C in A centered at 0 we have
∫

C

f(z)

zk+1
dz =

∫

C

∑

∞

n=−∞
anz

n

zk+1
dz =

∞
∑

n=−∞

∫

C

anzn−k−1dz =

∫

C

ak

z
dz

(since
∫

C

anzn−k−1dz = 0

for n 6= k and 2πi for n = k). Thus we have
∫

C

f(z)

zk+1
dz ==

∫

C

ak

z
dz = 2πiak

or

ak =
1

2πi

∫

C

f(z)

zk+1
dz.

�

The following results are immediate.

Corollary 2.4. If f(z) is analytic in R1 < |z − z0| < R2, then f has
a unique Laurent series representation

f(z) =
∞

∑

k=−∞

ak(z − z0)
k
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where

ak =
1

2πi

∫

C

f(z)

(z − z0)k+1
dz

for C = C(z0, R) with R1 < R < R2.

Corollary 2.5. If f has an isolated singularity at z0, then for some
δ > 0 and 0 < |z − z0| < δ,

f(z) =

∞
∑

k=−∞

ak(z − z0)
k

with the ak defined as above.

Of course, in general we do not want to calculate the coefficients of
a Laurent expansion explicitly using the results we have developed -
instead we usually want to manipulate geometric series as we often did
with Taylor series. We illstrate with some examples.

Example 2.6. (i) The function f(z) = 1/z2 has an isolated sin-
gularity z = 0. Notice that around z = 0 the Laurent expan-
sion is

1

z2

i.e. 1/z2 is its own Laurent expansion.
(ii) The function f(z) = 1/(z2(z − 1)) has an isolated singularity

at z = 0 and z = 1. We can consider the different power series
representations around different annuluses.

Around z = 0, provided |z| < 1, we have

1

z2(z − 1)
=

1

z2

−1

(1 − z)
= −

1

z2
(1 + z + z2 + z3 + . . . ) = −

∞
∑

k=−2

zk

Around z = 0, for |z| > 1, we have

1

z2(z − 1)
=

1

z2

1
z

1 − 1
z

=
1

z3
(1 +

1

z
+

1

z2
+

1

z3
+ . . . ) =

−3
∑

k=−∞

zk.

Around z = 1, provided |z − 1| < 1, we have

1

z2(z − 1)
=

1

(1 + (z − 1))2

1

(z − 1)
=

1

(z − 1)

(

1

1 + (z − 1)

)2

)

=
1

(z − 1)

(

1 − (z − 1) + (z − 1)2 − (z − 1)3 + . . .

)2

=
1

z − 1
− 2 + 3(z − 1)− 4(z − 1)2 + · · · =

∞
∑

k=−1

(−1)k+1(k + 2)(z − 1)k
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Around z = 1, for |z − 1| > 1, we have

1

z2(z − 1)
=

1

(z − 1)2

(

1

1 + 1
(z−1)2

)2
1

z − 1

=
1

(z − 1)3

(

1−
1

(z − 1)
+

1

(z − 1)2
−

1

(z − 1)3
+. . .

)2

=
−3
∑

k=−∞

(−1)k 2 + k

(z − 1)k
.

(iii) The function sin (1/z) has an essential singularity at z = 0. To
see this, we observe that around z = 0, sin (z) has the power
series representation

∞
∑

k=0

(−1)k z2k+1

(2k + 1)!
,

so sin (1/z) has the power series representation
∞

∑

k=0

(−1)k 1

z2k+1(2k + 1)!
.

Definition 2.7. If
f(z) =

∑

ak(z − z0)
k

is the Laurent expansion around an isolated singulairty z0,
−1
∑

−∞

ak(z − z0)
k

is called the principle part of f at z0 and
∞

∑

0

ak(z − z0)
k

the analytic part.

The principle part of the Laurent expansion around an islolated singu-
larity describes completely the type of singularity it is. Specifically, we
have the following:

Proposition 2.8. Suppose z0 is an isolated singularity of f(z).

(i) If z0 is removable then all the coefficients of the principle part
are 0.

(ii) If z0 is a pole of order k then C
−k 6= 0 but C

−N = 0 for all
N > k.

(iii) If z0 is an essential singularity then there are infinitely many
nonzero coefficients in its principle part.

Proof. (i) If f(z) has a removable singularity at z0, then since
f(z) = g(z) (z 6= z0) for some function analytic at z0, the
Laurent expansion of f(z) must agree with the Taylor series
of g(z).
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(ii) If f(z) has a pole of order k, then f(z) = A(z)/B(z) where
B(z) has a zero of order k. In particular, f(z) = Q(z)/(z−z0)

k

where Q(z) is some analytic function. Since Q(z) is analytic
at z0, it has a Taylor expansion

Q(z) =
∞

∑

n=0

an(z − z0)
n

where Q(z0) 6= 0. Thus

f(z) =
Q(z)

(z − z0)k
=

∞
∑

l=−k

Cl(z − z0)
l

where Cl = al+k and C
−k 6= 0.

(iii) If f(z) has an essential singularity at z0, then there is no N
such that (z−z0)

Nf(z) is analytic (else it would be a pole), so
there must be infinitely many nonzero terms in the principle
part of f(z).

�

As a corollary to our results, we can justify the fact that any rational
function can be written as a sum of partial fractions.

Theorem 2.9. (Partial Fraction Decomposition) Any proper rational
function

R(z) =
P (z)

Q(z)
=

P (z)

(z − z1)k
1(z − z2)k2 . . . (z − zn)kn

where P and Q are polynomials with deg(P ) < deg(Q) can be expanded
as a sum of polynomials in 1/(z − zi) for i = 1, 2, . . . , n.

Proof. Since R has a pole of order at most k at z = z1,

R(z) = P1(
1

z − z1

) + A1(z)

where P1(1/(z − z0)) is the principle part of the Laurent expansion
around z1 and A1 is the analytic part (so P1(1/(z − z1)) is a sum of
(strictly positive) powers of 1/(z−z1)). It follows that R(z)−P1(1/(z−
z1)) has a removable singularity at z1 (since we have subtracted the
principle part) and the same principle part as R(z) at each of the
singularities z2, . . . , zn (since P1(z/(z − z1)) will be analytic at each of
the singularities z2, . . . , zn).
We can repeat this process taking

Ai(z) = R(z) − P1

(

1

(z − z1)

)

− P2

(

1

(z − z2)

)

− · · · − Pi

(

1

(z − zi)

)
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by subtracting the principle part of the Laurent expansion of R(z) from
Ai−1(z). This gives

An(z) = R(z) − P1

(

1

(z − z1)

)

− P2

(

1

(z − z2)

)

− · · · − Pn

(

1

(z − zn)

)

Since all the singularities are removable, by defining the values of An(z)
at each of the points z1, . . . , zn, it follows that An(z) is an entire func-
tion. Notice also that since R and its principle parts go to 0 as z → ∞,
it follows that An(z) is bounded, and thus by Louvilles Theorem, it is
constant, and in fact 0 (since it approaches 0 and z → ∞. It follows
that

R(z) = P1

(

1

(z − z1)

)

+ P2

(

1

(z − z2)

)

+ · · ·+ Pn

(

1

(z − zn)

)

�

Homework
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