
Introduction and Preliminaries

“Algebra and Calculus”.

1. Introduction and Motivation

Loosely speaking, complex analysis is the subject which attempts to
take all the ideas developed for real numbers and functions of real
variables (the ideas from basic algebra, Calculus 1, Calculus 2, Vector
Calculus) and generalize them to complex numbers and functions of
complex variables. Some of these ideas will generalize directly (ideas
of addition, multiplication etc.) and some will have very different gen-
eralizations (exponential functions, integrals, logarithms). Throughout
the course, there will only be a small amount of completely new mate-
rial developed (material which is unique to complex variables and has
no analogue in real variables), so most of the ideas we develop should
be familiar. Therefore, for most sections, our approach will be to first
recall the real variable problem, and then discuss the complex variable
analogue. Of course, it goes without saying that though many of the
ideas we develop will not be new, most of the results we develop will
be new because things quickly become very different when considering
complex numbers.
The first obvious question to ask ourselves in complex analysis is why
would we want to generalize the ideas of real numbers and functions
of real variables to complex numbers and functions of complex vari-
ables? The answer to this is easy - complex analysis is one of the
most useful branches of mathematics in the applied sciences. Though
we shall only see a small number of applications, complex analysis
reaches across disciplines such as fluid dynamics, electromagnetism,
string theory, and quantum field theory. Complex analysis also has ap-
plications in branches of mathematics such as number theory, geometry
and (real variable) calculus. For example, in Calculus 2, you probably
once showed that the series
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converges (HOW?). However, except using approximations, you were
probably not able to determine exactly what it converged to. We shall
use complex analysis to show that
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2. Prerequisites and Preliminaries

The prerequisites for this course include Calculus 1, Calculus 2, Vector
Calculus, and discrete math. Though not necessary, it may be helpful
to have seen some abstract algebra, real analysis and topology. Of
course, not all of the material from these courses will be required, so
below is a (non-exhaustive) list of some of the major ideas we shall
need from the prerequisite courses.

(i) Calculus 1 - continuity of a function (ε-δ definition), the def-
inition of the derivative (difference quotient), differentiability
of a function, limits (techniques and ε-δ).

(ii) Calculus 2 - Parameterizing curves in 2-space, polar coor-
dinates, sequences and series (definitions and techniques for
showing convergence/divergence).

(iii) Vector Calculus - functions of two variables, space curves
and parametrization of curves, definition of a line integral, ba-
sic line integral calculations (direct method, Green’s Theorem
and Fundamental Theorem of Calculus).

(iv) Discrete Math - Proof techniques (this course will be par-
tially proof based - both in lectures and assignments, so proof
techniques will be very important).

Though not from prerequisite courses, the following definitions are
taken from courses some of you may have seen and will be required
for the course.

Definition 2.1. Vector Calculus and Real Analysis A curve C
given by parametric equations (x(t), y(t)) is called smooth if both
derivatives x′(t) and y′(t) exist and x′(t) and y′(t) are not both equal to
zero at the same point (except possibly at the endpoints of the curve).

Definition 2.2. Modern Algebra - A field is a triple (F, +, ∗), where
F is a nonempty set, and + and ∗ are binary operations from F × F
to F , such that:

(i) Both + and ∗ are associative, i.e for all a, b, c in F , a+(b+c) =
(a + b) + c and a ∗ (b ∗ c) = (a ∗ b) ∗ c,

(ii) Both + and * are commutative, i.e for all a, b belonging to F ,
a + b = b + a and a ∗ b = b ∗ a,

(iii) The operation ∗ is distributive over the operation + i.e for all
a, b, c, belonging to F , a ∗ (b + c) = (a ∗ b) + (a ∗ c),

(iv) There exists an additive identity, i.e there exists an element 0
in F , such that for all a belonging to F , a + 0 = a,

(v) There exists a multiplicative identity, i.e. there exists an ele-
ment 1 in F different from 0, such that for all a belonging to
F , a ∗ 1 = a,
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(vi) For each element in F , there exists an additive inverse, i.e for
every a belonging to F , there exists an element −a in F, such
that a + (−a) = 0,

(vii) For each nonzero element of F , there exists a multiplicative
inverse, i.e for every a 6= 0 belonging to F , there exists an
element a−1 in F , such that a ∗ a−1 = 1.

All rules should be familiar from elementary arithmetic.

Example 2.3. (i) The set of rational numbers Q with the usual
operations of addition and multiplication form a field.

(ii) The integers Z with the usual operations of addition and mul-
tiplication do not form a field (WHY?).

Definition 2.4. Linear Algebra and Real Analysis Let R denote
the field of real numbers. For any non-negative integer n, let Rn denote
the set of all n-tuples of real numbers. An element of Rn is written
x = (x1, x2, . . . , xn) where each xi is a real number. We can define the
following operations on Rn:

(i) (Addition/Subtraction)

(x1, x2, . . . , xn)± (y1, y2, . . . , yn) = (x1 ± y1, x2 ± y2, . . . , xn ± yn)

(ii) (Scalar Multiplication)

c ∗ (x1, . . . , xn) = (c ∗ x1, . . . , c ∗ xn)

(iii) (Inner Product)

(x1, x2, . . . , xn) · (y1, y2, . . . , yn) =
n∑

i=1
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(iv) (Norm)

|(x1, x2, . . . , xn)| =

(
(x1, x2, . . . , xn) · (x1, x2, . . . , xn)

) 1
2

=

( n∑
i=1

x2
i

) 1
2

The set Rn together with these operations is called Euclidean n-space.


