Relations and Equivalence Relations

In this section, we shall introduce a formal definition for the notion of
a relation on a set. This is something we often take for granted in ele-
mentary algebra courses, but is a fundamental concept in mathematics
i.e. the very notion of a function relies upon the definition of a relation.
Following this, we shall discuss special types of relations on sets.

1. BINARY RELATIONS AND BASIC DEFINITIONS

We start with a formal definition of a relation on a set S.

Definition 1.1. A (binary) relation on a set S is a subset R of the
Cartesian product S x S. If R is a relation and (z,y) € R, then we say
“x is related to y by R” or simply zRy.
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Example 1.2. The most familiar of all relations is the relation “=
(equals) which consists of all the elements (z,2) € S x S.

Example 1.3. Suppose that S = {0,1,2,3} and R =< (less than with
standard definition from the integers). Write down all the elements of

R.

We have 0.1, (0.2, (0.3
R:{ (1L2), (1,3), (2.3) }

(since it consists of all elements (z,y) with z < y).

There are certain special properties a relation can have such as the
following;:

Definition 1.4. Suppose R is a relation on a set S. Then we define
the following:
e We say R is reflexive if xRz for all x € S
e We say that R is symmetric if Ry implies yRx for all z,y € S
e We say R is transitive if xRy and yRz implies xRz for all
x,y,z €S

We illustrate with some examples.

Example 1.5. Show that the relation < (less than) on R is a transitive
relation which is not symmetric or reflexive.

Suppose x < y and y < z. Then clearly x < z and hence < is transitive.
We do not have z < z and if x < y, then it is not the case that y < x,
so it follows that it is neither reflexive or symmetric.

Example 1.6. Let X = {a,b,c} and let S = P(X). We define a
relation R on P(X) as follows: for all A, B € 5,

ARB <= N(A) < N(B)
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Determine whether R is reflexive, symmetric, transitive.

We check each property:

(i) Reflexive: Clearly this operation is reflexive since N(A) <
N(A)

(7) Symmetric: This operation is not symmetric. Specifically, take
A =g and B = {a}. Then N(A) =0 < N(B) = 1. However,
N(B) is not less than or equal to N(A) i.e. to be symmetric,
we must have N(B) < N(A) whenever N(A) < N(B).

(74i) Transitive: This operation is transitive. Specifically, if N(A) <
N(B) and N(B) < N(C), then N(A) < N(C).

2. EQUIVALENCE RELATIONS AND EXAMPLES

A very important type of relation are the so-called equivalence relations
defined as follows.

Definition 2.1. Suppose that R is a relation on a set S. Then we call
R an equivalence relation if R is reflexive, symmetric and transitive.

We illustrate how to show a relation is an equivalence relation or how
to show it is not an equivalence relation.

Example 2.2. Show that the relation D defined on Z by
rDy <= 3|(2* —1?)
is an equivalence relation.

We show each of the properties individually.

(1) Reflexive: For any x € Z, we have 2 — 2 = 0, and since 3|0,
it follows that zDx for all z € Z
(71) Symmetric: Suppose xDy. Then 3|(z* — y?) so z° — y* = 3n
for some n € Z. Tt follows that y*> — 22 = 3(—n), and hence
3|(y* — 2?). Consequently yDz, so D is symmetric.
(7i1) Transitive: Suppose xDy and yDz. Then there exists n,m € Z
such that 22 — y? = 3n and y? — 22 = 3m. It follows that

2 — (B3m+2*) =3nor2* — 22 =3m+3n=3(n+m)
and so Dz i.e. D is transitive.

Since D is reflexive, symmetric and transitive, it follows that D is an
equivalence relation.

Example 2.3. Suppose that X is a non-empty set and let S = P(X).
Show that the relation for all A, B € S,

ARB <= N(A) < N(B)
is not an equivalence relation.

To show a relation is not an equivalence relation, we simply need to
show that it is either not reflexive, symmetric or transitive. However,
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we already considered this example and show that it was not a sym-
metric relation. Specifically, take A =g and B = {a} where a € S (we
are assuming S is non-empty). Then N(A) =0 < N(B) = 1. However,
N(B) is not less than or equal to N(A) i.e. to be symmetric, we must
have N(B) < N(A) whenever N(A) < N(B). Thus this relation is not
an equivalence relation.

3. EQUIVALENCE CLASSES AND PARTITIONS OF SETS

An important application of equivalence relations is that they can be
used to construct partitions of sets. To do this, we need the following
definition.

Definition 3.1. Suppose R is an equivalence relation on S. Then for
any a € S, we define the equivalence class of a to be the set of all
elements of S which are related to a by R. Symbolically, we write

la] = {z € S|aRx}
We illustrate with an example.

Example 3.2. Let S = {1,2,3,...,19,20} and define an equivalence
relation R on S by

zRy <= 4|(x —vy)
Determine the equivalence classes of R.

In order to determine equivalence classes, we simply need to group the
elements together according to which ones are equivalent to each other.
We start with 1 and move onward:

[1] ={1,5,9,13,17}
2] = {2,6,10, 14, 18}
3] = {3,7,11,15,19}
[4] = {4,8,12,16,20}

Notice that any other equivalence class we construct will be the same
as one of these e.g [1] = [5]. Thus we have found all the different
equivalence classes of R.

Notice that the equivalence classes in the last example split up the set
S into 4 mutually disjoint sets whose union was S. In particular, the
equivalence classes formed a partition of S. This is in fact always true,
and is a consequence of the following more general theorem.

Theorem 3.3. Suppose that S is a set. Then:

(i) Suppose R is an equivalence relation of S. Then the classes of
R form a partition of S.



(i) Suppose that P = {Si,...,Sk...} is a partition of the set S.
Then we can define an equivalence relation on S by

xRy <= x,y € S; for some i

i.e. two elements are equivalent if they are in the same set.

Moreover, this correspondence between equivalence relations and par-
titions is a one-to-one correspondence i.e. the number of equivalence
relations on a set is equal to the number of partitions of that set.

Proof. Suppose that R is an equivalence relation on S and let Sy, S, . ..
denote the equivalence classes of S. In order to show that they form
a partition, we need to show that they are mutually disjoint and the
union of all is S.

To show that

us; =8

it suffices to show that every s € S lies in at least one of these sets.
However, since R is an equivalence relation, given any s € s, sRS, so
s € [s] i.e. s will always be a member of its own equivalence class.
Thus every element of S appears in at least one equivalence class.

To show they are disjoint, we shall show that if y € [z], then [y] = [z].
Suppose that y € [z]. Then we have xRy, and hence yRz since R is
symmetric. Now if z € [z], then we have xRz, and it follows that y Rz
(by transitivity), and hence z € [y]. In particular, [z] C [y]. Using an
identical argument, we can show [y] C [z] and thus [z] = [y]. Hence
the set of equivalence classes of R form a partition of S.

Now suppose that Sp, ... are a partition of S and let R be the relation
defined by

TRy < x,y € 5;
We shall show this is an equivalence relation.
Clearly it is reflexive since xRz i.e x lies in the same subset as itself.
Next, if z Ry, then x,y € S; for some fixed i, so y, x € .S; for some fixed
1, and hence yRx, so R is symmetric. Flnally, if xRy and yRz, then
x,y,z € 5; for some fixed i. In particular, z, z € S; and hence xRz, so
R is transitive. It follows that R is an equivalence relation.
Clearly this construction define a one-to-one correspondence. 0

We finish with a couple of examples.

Example 3.4. Determine the total number of equivalence relations on
a set with three elements.

Since there is a one-to-one correspondence between partitions of sets
and equivalence relations, it suffices to count the number of partitions
of a set with three elements. Let S = {a,b,c}. Then the possible
partitions are:

{5},



{{a},{b,c}},

{{v},{a, c}},

{{c}, {a, b}},

{{a}, {0}, {c}}.
In particular, there are five different partitions on S and hence five
different equivalence relations which can be imposed on S.

Homework

(i) From the book, pages 592-594 (Section 10.2): Questions: 12,
13, 25, 26, 30, 37

(74) From the book, pages 608-610 (Section 10.3): Questions: 3, 7,
8, 12, 17, 23,



