
Section 4.1: Sequences and Series

In this section, we shall introduce the idea of sequences and series as
a necessary tool to develop the proof technique called mathematical
induction. Most of the material in this section should be review from
Calculus 2.

1. Sequences

We start with a formal definition of a sequence with some related ter-
minology and give some easy examples.

Definition 1.1. A sequence is a succession of numbers

am, am+1, am+2, . . .

written in a specificied order. We call am the initial term, and in
general, a term ak in a sequence is called the kth term where k is called
the subscript or index of the term. If the sequence terminates at an,
then we call the term an the final term. A general formula for a
sequence is an expression for the values of ak in terms of k.

Remark 1.2. A sequence does not have to start at m = 1.

Remark 1.3. Note that sequences can be defined recursively i.e. in
terms of the previous terms.

The following are some simple examples of sequences given by general
formulas.

Example 1.4. (i) We define a sequence as ak = k. This se-
quence will consist of the integers written in consecutive order
1, 2, 3, 4, . . . .

(ii) We can define an interesting sequence as follows,

ak = kth decimal place in the decimal expansion of π.

(iii) We can define the recursive sequence a1 = 1, a2 = 1 and for
n > 2 we define an = an−1 + an−2. The first few terms are:
{1, 1, 2, 3, 5, 8, 13, . . .}. This sequence is called the Fibonacci
sequence and arises in many strange natural and physical sit-
uations.

(iv) Consider the sequence

ak = (−1)kk!

Note that consecutive terms changes sign. We call such a
sequence an alternating sequence.

We have seen a few examples of sequences given a general formula for
their kthe terms. Another useful skill is being able to determine a
general formula given a few terms of the sequence.
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Example 1.5. Find formulas for the following sequences (ei-
ther recursive or as a function of n).

(i)

{1, 4, 9, 16, 25, 36, . . .}.

Observe that this sequence is the ascending list of squares
of integers. Therefore, a formula will be ak = k2.

(ii)

{1,−
1

2
,
1

4
,−

1

8
, . . .}.

In this case, the sequence is changing from positive to neg-
ative and the denominator is ascending power of 2. Therefore
a formula will be

ak = (−1)k+1
1

2k
.

(iii)

{
1

2
,
3

4
,
5

6
,
7

8
, . . . }.

The numerator is running over consecutive odd numbers and
the denominator is running over consecutive even numbers.
Thus we have

ak =
2k − 1

2k
.

(iv)

{1, 0,−1,−1, 0, 1, 1, 0,−1,−1, 0, 1, 1 . . .}.

This function does not look like it can be described nicely
as a function of n. Therefore, we try to define it recursively.
Notice that,

a1 = 1

a2 = 0

a3 = a2 − a1 = −1

a4 = a3 − a2 = −1 − 0 = −1

a5 = a4 − a3 = −1 − (−1) = 0

a6 = a5 − a4 = 0 − (−1) = 1

a7 = a6 − a5 = 1 − 0 = 1

a8 = a7 − a6 = 1 − 1 = 0

a9 = a8 − a7 = 0 − 1 = −1

a10 = a9 − a8 = −1 − 0 = −1

a11 = −1 − (−1) = 0

so the sequence will be a1 = 0, a2 = 1 and ak = ak−1 − ak−2

for n > 2.
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2. Series

Recall the following definition of a series.

Definition 2.1. If am, am+1, . . . is a sequence, we can add up all the
terms am + am+1 + . . . . We call this sum a series and the expression
am + am+1 + . . . the expanded form of the series. If the final term in
the sequence is an, then we denote it by

n∑

i=m

ai

(called the summation form of the series) and call m the lower limit
and n the upper limit. If the sequence is infinite, we replace the upper
limit by ∞.

We consider some examples of how to work with series.

Example 2.2. Evaluate the value of the series
6∑

i=3

(−1)i

i2

In expanded form, we have
6∑

i=3

(−1)i

i2
= −

1

9
+

1

16
−

1

25
+

1

36
=

73

1200
.

Example 2.3. Write the series
n+1∑

i=5

i + 1

i2 + 1

in expanded form

In expanded form, we have
n+1∑

i=5

i + 1

i2 + 1
=

6

26
+

7

37
+ · · ·+

n + 2

(n + 1)2 + 1
.

For a finite series, the final value of a series is often related to the
upper limit and under such circumstances, we have to be careful when
calculating values of such sums. We illustrate.

Example 2.4. Write the series

n +
n − 1

2
+

n − 2

4
+ · · ·+

1

2n−1

in summation form and find the values for n = 1, n = 2 and n = 3.

The general term for this series will be

ak =
n − k

2k



4

for 0 6 k 6 (n − 1). Therefore, in summation notation, we have

n +
n − 1

2
+

n − 2

4
+ · · ·+

1

2n−1
=

n−1∑

k=0

n − k

2k
.

To find the different values of the sum, we need to return to expanded
form. Specifically, we have

when n = 1 the sum is: 1

when n = 2 the sum is: 2 +
1

2

when n = 3 the sum is: 3 +
2

2
+

1

4

3. Products

Just as we can sum the terms in a sequence, we can determine the
product of terms in a sequence.

Definition 3.1. We define the product of the sequence ak from m to
n to be

n∏

i=m

ai = am · am+1 · · ·an.

Calculations of products is similar to that of sums and only requires
simple arithmetic after a product has been written in expanded form, so
we shall not do any specific examples. However, there is on particular
type of product which will be very important in later sections.

Definition 3.2. For each positive integer n, the quantity n factorial,
denoted n! is the product of all integers from 1 to n i.e.

n! =

n∏

i=1

i.

We define 0! = 1.

Example 3.3. Compute the following:

(i)
4!

0!

We have
4!

0!
=

4 · 3 · 2 · 1

1
= 24

(ii)
n!

(n − k)!
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We have

n!

(n − k)!
=

n · (n − 1) · · · (n − k) · (n − k − 1) · · ·2 · 1

(n − k)(n − k − 1) · · ·2 · 1
= n·(n−1) · · · (n−k+1).

As is probably expected, there are certain rules from elementary arith-
metic which generalize to sums and products. Specifically, we have the
following.

Theorem 3.4. Suppose that am, am+1, . . . and bm, bm+1, . . . are se-

quences and c is some real number. Then the following are true:

(i)
n∑

k=m

ak +

n∑

k=m

bk =

n∑

k=m

(ak + bk)

(ii)

c ·

n∑

k=m

ak =

n∑

k=m

c · ak

(iii)
n∏

k=m

ak ·

n∏

k=m

bk =

n∏

k=m

(ak · bk)

Such formulas can be used to combine multiple sums and products.

4. Changing Variables

Often it may be useful, or required, to change the variable in a given
series or product. Under such circumstances, we need to be careful to
make sure we also change the limits as well as the expression in the
product or sum. We shall illustrate with an example of how to perform
such an action.

Example 4.1. Combine the summations

n∑

k=1

(2k − 3) + 2 ·

n+1∑

k=2

(2k2 + 1)

to make a single summation

First we have
n∑

k=1

(2k − 3) + 2 ·

n+1∑

k=2

(2k2 + 1) =

n∑

k=1

(2k − 3) +

n+1∑

k=2

(4k2 + 2)

We would like to combine these sums, but we cannot use the law since
the indexes are different. Therefore, we shall make the change of vari-
able k = j + 1 in the second sum. First, changing the limits, if k = 2,
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then j + 1 = 1, so j = 1, and similarly, if k = n + 1, then j + 1 = n + 1
or j = n. Therefore, we have

n+1∑

k=2

(4k2 + 2) =
n∑

j=1

(4(j + 1)2 + 2).

Since changing the variable j to k does not change the value of the
sum, we have

n∑

j=1

(4(j + 1)2 + 2) =
n∑

k=1

(4(k + 1)2 + 2).

Thus
n∑

k=1

(2k−3)+2·
n+1∑

k=2

(2k2+1) =
n∑

k=1

(2k−3)+
n+1∑

k=2

(4k2+2) =
n∑

k=1

(2k−3)+4(j+1)2+2).

Homework

(i) From the book, pages 213-215: Questions: 2, 6, 12, 16, 18a,
18c, 19, 28, 31, 33, 35, 41, 43, 46, 48, 52, 54, 59, 60,


