
Section 2.6: Limits at Infinity and Horizontal Asymptotes

In previous sections we considered limits at finite points. In addition to
a discussion on finite limits, we extended the definition to also include
infinite limits (or vertical asymptotes). In this section we also consider
infinite limits, but in this case we are considering the limit as x grows
in size without bound toward ∞ or −∞.

1. The Definition of Continuity

We start with some definitions of infinite limits.

Definition 1.1. Suppose that f(x) is some function and L is a number.

(i) If f(x) is defined on some interval (−∞, a), then we say the
limit of f(x) as x goes to −∞ is L and write

lim
x→−∞

f(x) = L

if the values of f(x) get closer and closer to L as x → −∞.
(ii) If f(x) is defined on some interval (a,∞), then we say the limit

of f(x) as x goes to ∞ is L and write

lim
x→∞

f(x) = L

if the values of f(x) get closer and closer to L as x → ∞.

If either

lim
x→∞

f(x) = L

or

lim
x→−∞

f(x) = L

we call the line y = L a horizontal asymptote of the function f(x).

We illustrate with some explicit examples.

Example 1.2. (i) Determine the horizontal asymptotes of f(x) =
e−x.

Observe that as x → ∞, we have f(x) → 0. Thus the line
y = 0 is a horizontal asymptote for f(x).

(ii) Determine the limits at infinity of f(x) = arctan (x)

Since arctan (x) is the inverse of tan (x) on (−π/2, π/2), and
we know that limx→π/2 tan (x) = ∞ and limx→−π/2 tan (x) =
−∞, it follows that

lim
x→∞

arctan (x) = π/2

and

lim
x→−∞

tan (x) = −π/2.

1



2

(iii) Determine the limits at infinity of

R(x) =
2x2 − 2x + 1

4x − 5x2 + 2
.

Observe that this is a rational function, so the end behavior
is determined by the quotients of the leading terms. In this
case, we have

lim
x→∞

2x2 − 2x + 1

4x − 5x2 + 2
= lim

x→∞

2x2

−5x2
= −2

5
.

Likewise, we have

lim
x→−∞

2x2 − 2x + 1

4x − 5x2 + 2
= −2

5
.

(iv) Determine the infinite limit

lim
x→∞

(
√

(9x2 − x) − 3x).

This limit looks like it could be either undefined or 0. How-
ever, using simple algebra, we shall show that it is neither of
these. We have

lim
x→∞

(
√

(9x2 − x) − 3x) lim
x→∞

(
√

(9x2 − x) − 3x)

√

(9x2 − x) + 3x
√

(9x2 − x) + 3x

= lim
x→∞

9x2 − x − 9x2

√

(9x2 − x) + 3x
= lim

x→∞

−x
√

(9x2 − x) + 3x

= lim
x→∞

−x
√

(9x2 − x) + 3x

(

1

x
1

x

)

= limx→∞

−1
√

(9 − 1

x
) + 3

=
−1√
9 + 3

= −1
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There are a number of interesting facts we can derive about horizontal
asymptotes.

Example 1.3. (i) Can a function pass through a horizontal asymp-
tote?

Yes - a function cannot pass through a vertical asymptote,
but it can certainly pass through a horizontal asymptote. Take
for example

f(x) =
sin (x)

x

which has horizontal asymptote y = 0, but it passes through
it infinitely many times.
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(ii) If a function has a horizontal asymptote, will it be the same
on both sides?

A horizontal asymptote does not have to be the same on
both sides. One specific example of a function with two differ-
ent horizontal asymptotes is the inverse tangent function:
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2. Infinite Limits at Infinity

Just as when we are taking a limit at a finite we can have an infi-
nite limit, it can also happen when we are considering limits at ∞.
Specifically we have the following:

Definition 2.1. Suppose that f(x) is some function.

(i) We write
lim

x→−∞

f(x) = ∞
to mean as x → −∞, f(x) → ∞.

(ii) We write
lim

x→−∞

f(x) = −∞
to mean as x → −∞, f(x) → −∞.

(iii) We write
lim

x→∞

f(x) = ∞
to mean as x → −∞, f(x) → ∞.

(iv) We write
lim

x→∞

f(x) = −∞
to mean as x → −∞, f(x) → −∞.

We illustrate with some examples.

Example 2.2. Evaluate the following limits.
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(i)

lim
x→∞

x2 − x6 + 2x

This is a polynomial, so the end behavior is the same as that
of the leading term, −x6. Thus we have

lim
x→∞

x2 − x6 + 2x = −∞

(ii)

lim
x→−∞

x(x − 2)

x + 2

This is a rational function, so the end behavior is the same
as that of the quotient of the leading term, x. Thus we have

lim
x→∞

x(x − 2)

x + 2
= −∞

(iii)

lim
x→−∞

e−x sin (x)

In this case sin (x) infinitely oscillates and e−x gets larger
and larger as x → ∞. Thus the function e−x sin (x) oscillates
between larger and larger numbers as x → ∞ and in particular,
the limit cannot possibly exist.

(iv)

lim
x→∞

x − 9
√

(4x2 + 3x + 2)

Though this is not a polynomial or rational function, we can
use the same idea to evaluate the end behavior. Specifically,
we only consider the largest of the terms as x → ∞ since all
the other terms will contribute much less to the value relative
to these terms. Specifically, we have

lim
x→∞

x − 9
√

(4x2 + 3x + 2)
= lim

x→∞

x
√

(4x2)
=

1

2

(v)

lim
x→−∞

x − 9
√

(4x2 + 3x + 2)

We can use the same idea as the previous example. Specif-
ically, we only consider the largest of the terms as x → −∞
since all the other terms will contribute much less to the value
relative to these terms. Specifically, we have

lim
x→−∞

x − 9
√

(4x2 + 3x + 2)
= lim

x→−∞

x
√

(4x2)
= −1

2
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Example 2.3. Use your knowledge of limits at ∞ and otherwise to
sketch a rough graph of p(x) = x3 − x.
We know that

lim
x→∞

p(x) = ∞
and

lim
x→−∞

p(x) = −∞.

We also know that p(0) = p(1) = p(−1) = 0. Thus since it is continu-
ous, the graph of p(x) must be similar to the graph given below:
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3. The Formal Definition of Limits at Infinity

Just as with regular limits, we can formalize the idea of a limits at ∞.
Below we state the formal definition for a finite limit at ∞. To define
infinite limits at ∞, we modify the definitions in the obvious way.

Definition 3.1. Suppose f(x) is some function and a is some constant.

(i) If f(x) is defined on (−∞, a) then

lim
x→−∞

f(x) = L

if for all ε > 0, there exists a number N such that x < N
implies |f(x) − L| < ε.

(ii) If f(x) is defined on (a,∞) then

lim
x→∞

f(x) = L

if for all ε > 0, there exists a number N such that x > N
implies |f(x) − L| < ε.

We illustrate with an example.
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Definition 3.2. Show that

lim
x→∞

1

x2
= 0.

We need to show that for all ε > 0, there exists a number N such that
x > N implies |1/x2| < ε. However |1/x2| < ε is only true if |x2| > 1

ε
or

|x| > 1

ε
1

2

. Thus for any ε, if we choose N = 1

ε
1

2

, then we are guranteed

that for all x with |x| < N , we have |1/x2| < ε.


