
Section 17.9
The Divergence Theorem

“Turning a Flux Integral into a Triple Integral”

The last result we consider is a generalization of Green’s Theorem -
converting a flux integral over a closed surface into a triple integral
over the interior of the surface.

1. The Divergence Theorem

To state the divergence theorem, we need the following definition which
uses the ideas we built up in the section on triple integrals.

Definition 1.1. A solid E is called a simple solid region if it is one of
the types (either Type 1, 2 or 3) given in Section 16.6.

Examples of a simple solid regions are spheres, ellipsoids, portions of
cylinders etc. We can now state the divergence theorem.

Result 1.2. Let E be a simple solid region and let S be the boundary of
E with outward orientation. Let ~F be a vector field whose component
functions have continuous partial derivatives on an open region which
contains E. Then

∫ ∫

S

~F · d~S =

∫ ∫ ∫

E

div ~FdV.

This Theorem tells us that any flux integral over a closed surface can
be converted into a triple integral over the interior (provided it is de-
fined on the interior), and since flux integrals in general are much more
difficult than triple integrals, this gives us an easier way to calculate
them. We illustrate with some examples.

Example 1.3. (i) Use the divergence theorem to evaluate
∫ ∫

S

(ex sin (y)~i + ex cos (y)~j + yz2~k) · d~S

where S is the box bounded by the planes x = 0, x = 1, y = 0,
y = 1, z = 0, z = 1.

Applying the divergence theorem, we have
∫ ∫

S

(ex sin (y)~i+ex cos (y)~j+yz2~k)·d~S =

∫ 1

0

∫ 1

0

∫ 1

0

(ex sin (y)−ex sin (y)+2yz)dxdydz

=

∫ 1

0

∫ 1

0

∫ 1

0

2yzdxdydz =

∫ 1

0

y2z

∣

∣

∣

∣

1

0

dz =

∫ 1

0

zdz =
1

2

1
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(ii) Suppose

~F (x, y, z) =
x

(x2 + y2 + z2)
3

2

~i +
y

(x2 + y2 + z2)
3

2

~j +
z

(x2 + y2 + z2)
3

2

~k

and S is the cylinder y2 + z2 = 4 with −2 6 x 6 2. Show that
the integral

∫ ∫

S

~F · d~S

is the same as the integral
∫ ∫

S1

~F · d~S

where S1 is the unit sphere centered at the origin oriented
outward.

Observe that div ~F = 0 (if you are unsure, check). However,

we cannot apply the divergence theorem since ~F is not de-
fined at (0, 0, 0). Observe however that if S1 is the unit sphere
centered at the origin, and S2 is the closed surface which con-
sists of S (oriented outward) and S1 (oriented inward), we can
apply the divergence theorem to get

∫ ∫

S2

~F · d~S =

∫ ∫ ∫

Int(S2)

0dV = 0.

However,
∫ ∫

S2

~F · d~S =

∫ ∫

S

~F · d~S −

∫ ∫

S1

~F · d~S = 0

so
∫ ∫

S

~F · d~S =

∫ ∫

S1

~F · d~S.

(iii) Use the divergence theorem to evaluate
∫ ∫

S

(3xy2~i + xez~j + z3~k) · d~S

where S is the surface of the cylinder y2 + z2 = 1 and the
planes x = −1 and x = 2.

We have div ~F = 3y2 + 3z2, so applying the divergence the-
orem, we have

∫ ∫

S

(3xy2~i + xez~j + z3~k) · d~S =

∫ ∫ ∫

R

(3y2 + 3z2)dV.

Converting to cylindricals along the x-axis, we have 3y2+3z2 =
r2, 0 6 r 6 1, 0 6 ϑ 6 2π, and −1 6 x 6 2, so

∫ ∫ ∫

R

3y2 + 3z2dV =

∫ 2

−1

∫ 2π

0

∫ 1

0

3r3drdϑdx = 2π(3)(
3

4
) =

9π

2
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As with Green’s Theorem, and Stokes Theorem, there are ways to apply
the divergence theorem indirectly. We illustrate with some examples.

Example 1.4. Let S be the open cone z =
√

(x2 + y2) with z 6 3.
Calculate

∫ ∫

S

~F · d~S

for each of the following:

(i) ~F = x~i + y~j + z~k

(ii) ~F = x~i + y~j

We consider each problem individually.

(i) Consider the surface L which consists of S and the cap C on
top of the cone oriented upward. Then the divergence Theorem
implies

∫ ∫

L

~F · d~S =

∫ ∫ ∫

I

3dV

where I is the interior of the cone. Therefore, we get
∫ ∫

L

~F · d~S =

∫ ∫ ∫

I

3dV = 3 ×
1

3
π9 × 3 = 27π

i.e. 3 times the volume of the cone since the integral of the
function 1 determines the volume of the region. This means

∫ ∫

S

~F · d~S = 27π −

∫ ∫

C

~F · d~S

the latter integral which is much easier than the first. In par-
ticular, the cap is the part of the function g(x, y) = 3 over the
circle D given by x2 + y2 6 9, so we can use the flux formula
for graphs of functions. Specifically, we have

∫ ∫

C

~F · d~S =

∫ ∫

D

(−x
∂g

∂x
− y

∂g

∂y
+ 3)dA =

∫ ∫

D

3dA = 27π

i.e. 3 times the area inside the circle D. In particular, we have
∫ ∫

S

~F · d~S = 0.

Note that we could have simply concluded this same result by
observing that the vectors in the vector field ~F point along the
surface S and do not flow through the surface!

(ii) We can follow a similar process as in the previous example. In
particular, in this case, we shall get

∫ ∫

S

~F · d~S = 18π −

∫ ∫

C

~F · d~S.

Observe however that
∫ ∫

C

~F · d~S = 0
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since all the vectors in the vector field ~F point along the surface
C (and not through the surface C. Hence

∫ ∫

S

~F · d~S = 18π.

We have learnt a lot of new material over the last few days, and as with
line integrals, we have learnt many different ways to calculate them.
Therefore, we finish, as we did with line integrals, with a decision tree
of which questions to ask when trying to determine which method to
use. As before, the general idea is to avoid using direct calculation as
much as possible, and instead convert the problem using either Stokes
theorem or the divergence theorem into a much simpler problem. No-
tice in the decision tree that only one path leads to direct calculation
(at all costs, we want to avoid direct calculation since it is always a
difficult process!).
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Is S closed?

Yes

((QQQQQQQQQQQQQQQ

No

wwoooooooooooooo

Is ~F a Curl field?

Yes

��

No

ttiiiiiiiiiiiiiiiiiiiiii

Is ~F divergent free?

Yes

++VVVVVVVVVVVVVVVVVVVVVV

No

��

Indirect Divergence or indirect Stokes

No

��

Stokes Theorem Divergence Theorem
∫ ∫

S
~Fd~S = 0 by the Divergence

Direct Calculation


