I have verified that this exam contains 9 problems and 6 printed pages. Initial___.

Print the name of the people sitting either side of you :- ________________

Short Answer (8 points each) - no explanation or calculations necessary though where appropriate, answers should be exact. Print your answers to each question in the appropriate numbered box below.

1. Find a formula for the \(n \)th term of the sequence

\[
\left\{ \frac{1}{2}, -\frac{1}{4}, \frac{1}{8}, -\frac{1}{16}, \frac{1}{32}, \ldots \right\}.
\]

2. The series

\[
\sum_{n=1}^{\infty} ar^n
\]

where \(r \) and \(a \) are constants is called a geometric series.

(a) For what values of \(r \) does it converge?

(b) When it converges, what does it converge to (in terms of \(a \) and \(r \))?
3. The series
\[\sum_{i=1}^{\infty} \frac{1}{n^p} \]
where \(p \) is a constant is called a \(p \)-series. For what values of \(p \) does it converge?

4. Briefly explain the difference between the limit comparison test and the ratio test for convergence of series.
5. **Briefly** explain why any power series centered at 0,
\[\sum_{n=0}^{\infty} c_n x^n \]
always converges for at least one value of \(x \).

6. Write down an alternating series which does not converge.
Long Answer (18 points each) - show work and provide explanations, an answer without supporting work is not worth much.

1. Test the following series for convergence or divergence and state which test you are using:

(a) \[\sum_{n=1}^{\infty} (-1)^n \frac{n^n}{n!} \]

(b) \[\sum_{n=2}^{\infty} \frac{\sqrt{n}}{n - 1} \]

(c) \[\sum_{n=0}^{\infty} \frac{1 + \sin(n)}{10^n} \]
2. Find the radius of convergence and the interval of convergence of the series

\[\sum_{n=1}^{\infty} (-1)^n n^4 x^n. \]
3. (a) For which values of p does the integral
\[\int_0^\infty e^{px} \, dx \]
converge? Find a formula in terms of p for the values of the integral for which it converges.

(b) For which values of p does the sequence
\[a_n = e^{pn} \]
converge?

(c) For which values of p does the series
\[\sum_{k=1}^{\infty} e^{pk} \]
converge?